Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202405083, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837601

ABSTRACT

Physical blending is an effective strategy for tailoring polymeric materials to specific application requirements. However, physically blended mixed plastics waste adds additional barriers in mechanical or chemical recycling. This difficulty arises from the intricate requirement for meticulous sorting and separation of the various polymers in the inherent incompatibility of mixed polymers during recycling. To overcome this impediment, this work furthers the emerging single-monomer - multiple-materials approach through the design of a bifunctional monomer that can not only orthogonally polymerize into two different types of polymers - specifically lactone-based polyester and CO2-based polycarbonate - but the resultant polymers and their mixture can also be depolymerized back to the single, original monomer when facilitated by catalysis. Specifically, the lactone/epoxide hybrid bifunctional monomer (BiLO) undergoes ring-opening polymerization through the lactone manifold to produce polyester, PE(BiLO), and is also applied to ring-opening copolymerization with CO2, via the epoxide manifold, to yield polycarbonate, PC(BiLO). Remarkably, a one-pot recycling process of a BiLO-derived PE/PC blend back to the constituent monomer BiLO in >99% selectivity was achieved with a superbase catalyst at 150 °C, thereby effectively obviating the requirement for sorting and separation typically required for recycling of mixed polymers.

2.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38795044

ABSTRACT

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

3.
Nat Chem ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649467

ABSTRACT

The selective synthesis of ultrahigh-molar-mass (UHMM, >2 million Da) cyclic polymers is challenging as an exceptional degree of spatiotemporal control is required to overcome the possible undesired reactions that can compete with the desired intramolecular cyclization. Here we present a counterintuitive synthetic methodology for cyclic polymers, represented here by polythioesters, which proceeds via superbase-mediated ring-opening polymerization of gem-dimethylated thiopropiolactone, followed by macromolecular cyclization triggered by protic quenching. This proton-triggered linear-to-cyclic topological transformation enables selective, linear polymer-like access to desired cyclic polythioesters, including those with UHMM surpassing 2 MDa. In addition, this method eliminates the need for stringent conditions such as high dilution to prevent or suppress linear polymer contaminants and presents the opposite scenario in which protic-free conditions are required to prevent cyclic polymer formation, which is capitalized to produce cyclic polymers on demand. Furthermore, such UHMM cyclic polythioester exhibits not only much enhanced thermostability and mechanical toughness, but it can also be quantitatively recycled back to monomer under mild conditions due to its gem-disubstitution.

4.
Angew Chem Int Ed Engl ; 63(22): e202404179, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38488293

ABSTRACT

Chemical recycling of polymers to monomers presents a promising solution to the escalating crisis associated with plastic waste. Despite considerable progress made in this field, the primary efforts have been focused on redesigning new monomers to produce readily recyclable polymers. In contrast, limited research into the potential of seemingly "non-polymerizable" monomers has been conducted. Herein, we propose a paradigm that leverages a "chaperone"-assisted strategy to establish closed-loop circularity for a "non-polymerizable" α, ß-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO). The resulting PDPO, a structural analogue of poly(δ-valerolactone) (PVL), exhibits enhanced thermal properties with a melting point (Tm) of 114 °C and a decomposition temperature (Td,5%) of 305 °C. Notably, owing to the structural similarity between DPO and δ-VL, the copolymerization generates semi-crystalline P(DPO-co-VL)s irrespective of the DPO incorporation ratio. Intriguingly, the inherent C=C bonds in P(DPO-co-VL)s enable their convenient post-functionalization via Michael-addition reaction. Lastly, PDPO was demonstrated to be chemically recyclable via ring-closing metathesis (RCM), representing a significant step towards the pursuit of enabling the closed-loop circularity of "non-polymerizable" lactones without altering the ultimate polymer structure.

5.
Chem Rev ; 124(7): 4393-4478, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38518259

ABSTRACT

Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.

6.
J Am Chem Soc ; 146(13): 9261-9271, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517949

ABSTRACT

Despite considerable recent advances already made in developing chemically circular polymers (CPs), the current framework predominantly focuses on CPs with linear-chain structures of different monomer types. As polymer properties are determined by not only composition but also topology, manipulating the topology of the single-monomer-based CP systems from linear-chain structures to architecturally complex polymers could potentially modulate the resulting polymer properties without changing the chemical composition, thereby advancing the concept of monomaterial product design. To that end, here, we introduce a chemically circular hyperbranched polyester (HBPE), synthesized by a mixed chain-growth and step-growth polymerization of a rationally designed bicyclic lactone with a pendent hydroxyl group (BiLOH). This HBPE exhibits full chemical recyclability despite its architectural complexity, showing quantitative selectivity for regeneration of BiLOH, via a unique cascade depolymerization mechanism. Moreover, distinct differences in materials properties and performance arising from topological variations between HBPE, hb-PBiLOH, and its linear analogue, l-PBiLOH, have been revealed where generally the branched structure led to more favorable interchain interactions, and topology-amplified optical activity has also been observed for chiral (1S, 4S, 5S)-hb-PBiLOH. More intriguingly, depolymerization of l-PBiLOH proceeds through an unexpected, initial topological transformation to the HBPE polymer, followed by the faster cascade depolymerization pathway adopted by hb-PBiLOH. Overall, these results demonstrate that CP design can go beyond typical linear polymers, and rationally redesigned, architecturally complex polymers for their unique properties may synergistically impart advantages in topology-augmented depolymerization acceleration and selectivity for exclusive monomer regeneration.

7.
Angew Chem Int Ed Engl ; 63(17): e202320214, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38418405

ABSTRACT

Geminal (gem-) disubstitution in heterocyclic monomers is an effective strategy to enhance polymer chemical recyclability by lowering their ceiling temperatures. However, the effects of specific substitution patterns on the monomer's reactivity and the resulting polymer's properties are largely unexplored. Here we show that, by systematically installing gem-dimethyl groups onto ϵ-caprolactam (monomer of nylon 6) from the α to ϵ positions, both the redesigned lactam monomer's reactivity and the resulting gem-nylon 6's properties are highly sensitive to the substitution position, with the monomers ranging from non-polymerizable to polymerizable and the gem-nylon properties ranging from inferior to far superior to the parent nylon 6. Remarkably, the nylon 6 with the gem-dimethyls substituted at the γ position is amorphous and optically transparent, with a higher Tg (by 30 °C), yield stress (by 1.5 MPa), ductility (by 3×), and lower depolymerization temperature (by 60 °C) than conventional nylon 6.

8.
Biomacromolecules ; 24(11): 5328-5341, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37782027

ABSTRACT

In the polyester family, the biopolymer with the greatest industrial potential could be poly(3-hydroxybutyrate) (PHB), which can be produced nowadays biologically or chemically. The scarce commercial use of PHB derives from its poor mechanical properties, which can be improved by incorporating a flexible aliphatic polyester with good mechanical performance, such as poly(ε-caprolactone) (PCL), while retaining its biodegradability. This work studies the structural, thermal, and morphological properties of block and random copolymers of PHB and PCL. The presence of a comonomer influences the thermal parameters following nonisothermal crystallization and the kinetics of isothermal crystallization. Specifically, the copolymers exhibit lower melting and crystallization temperatures and present lower overall crystallization kinetics than neat homopolymers. The nucleation rates of the PHB components are greatly enhanced in the copolymers, reducing spherulitic sizes and promoting transparency with respect to neat PHB. However, their spherulitic growth rates are depressed so much that superstructural growth becomes the dominating factor that reduces the overall crystallization kinetics of the PHB component in the copolymers. The block and random copolymers analyzed here also display important differences in the structure, morphology, and crystallization that were examined in detail. Our results show that copolymerization can tailor the thermal properties, morphology (spherulitic size), and crystallization kinetics of PHB, potentially improving the processing, optical, and mechanical properties of PHB.


Subject(s)
Polyesters , Polymers , Crystallization , Polymers/chemistry , 3-Hydroxybutyric Acid/chemistry , Polyesters/chemistry
9.
Science ; 380(6640): 64-69, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37023198

ABSTRACT

Polyhydroxyalkanoates (PHAs) have attracted increasing interest as sustainable plastics because of their biorenewability and biodegradability in the ambient environment. However, current semicrystalline PHAs face three long-standing challenges to broad commercial implementation and application: lack of melt processability, mechanical brittleness, and unrealized recyclability, the last of which is essential for achieving a circular plastics economy. Here we report a synthetic PHA platform that addresses the origin of thermal instability by eliminating α-hydrogens in the PHA repeat units and thus precluding facile cis-elimination during thermal degradation. This simple α,α-disubstitution in PHAs enhances the thermal stability so substantially that the PHAs become melt-processable. Synergistically, this structural modification also endows the PHAs with the mechanical toughness, intrinsic crystallinity, and closed-loop chemical recyclability.

10.
Angew Chem Int Ed Engl ; 62(31): e202301850, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37072343

ABSTRACT

Current search for more sustainable plastics seeks to redesign polymers possessing both chemical recyclability to monomer for a circular plastics economy and desirable performance that can rival or even exceed today's non-recyclable or hard-to-recycle petroleum-based incumbents. However, within a traditional monomer framework it is challenging to optimize, concurrently, contrasting polymerizability/depolymerizability and recyclability/performance properties. Here, we highlight the emerging hybrid monomer design strategy to develop intrinsically circular polymers with tunable performance properties, aiming to unify desired, but otherwise conflicting, properties in a single monomer. Conceptually, this design hybridizes parent monomer pairs of contrasting, mismatching, or matching properties into offspring monomers that not only unify the above-described conflicting properties but also radically alter the resultant polymer properties far beyond the limits of what either parent homopolymers or their copolymers can achieve.

11.
ChemSusChem ; 16(8): e202300008, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36638158

ABSTRACT

Technologically important thermosets face a long-standing end-of-life (EoL) problem of non-reprocessability, a more sustainable solution of which has resolved to nascent vitrimers that can merge the robust material properties of thermosets and the reprocessability of thermoplastics. However, the lifecycle of vitrimers is still finite, as they often suffer from significant deterioration of mechanical performance following multiple reprocessing cycles, analogous to mechanical recycling, and they often show undesired creep under working conditions. To address these two key limitations, we have developed a cross-linked semi-crystalline polythioester with both dynamic covalent bonds and intrinsic crystallinity and chemical recyclability, affording a vitrimeric system that exhibits not only reprocessability and crystallinity-restricted creep but also complete chemical recyclability to initial monomer by catalyzed depolymerization in solution or bulk. Therefore, reported herein is an "infinite" vitrimer system that is empowered with a facile closed-loop EoL option once serial reprocessing deteriorates performance and the material can no longer meet the application requirements. Specifically, the polythioester vitrimer was constructed by copolymerization of a bicyclic thioester with a bis-dithiolane, producing dynamically cross-linked polythioesters with excellent property tunability, from amorphous to semi-crystalline states and melting transition temperatures from 91 to 178 °C.

12.
J Am Chem Soc ; 144(43): 20016-20024, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36256876

ABSTRACT

Naturally produced, biodegradable polyhydroxyalkanoates (PHAs) promise more sustainable alternatives to nonrenewable/degradable plastics, but biological PHA's stereomicrostructures are strictly confined to isotactic (R)-polymers or copolymers of random sequences. Chemical synthesis via catalyzed ring-opening polymerization (ROP) of cyclic (di)esters offers expedient access to diverse PHA microstructures, including those with defined comonomer sequences and tacticities. However, the synthesis of alternating isotactic PHAs has not been achieved by the existing methodologies. Here, we report the design of unsymmetrically disubstituted eight-membered diolides (rac-8DLR1-R2) and their site- and stereoselective ROP with discrete chiral catalysts, enabling the synthesis of alternating isotactic PHAs, poly(3-hydroxybutyrate-alt-3-hydroxyvalerate) (alt-P3HBV) and poly(3-hydroxybutyrate-alt-3-hydroxyheptanoate) (alt-P3HBHp), with high to quantitative (>99%) alternation and isotacticity and Mn up to 113 kDa and D = 1.01. Physical properties of such PHAs are substantially determined by the degree of backbone sequence alternation and tacticity, ranging from amorphous to semi-crystalline materials. The alt-P3HBV shows significantly improved mechanical performance relative to the constituent homopolymers. Intriguingly, enantiomeric (R)-alt-P3HBV and (S)-alt-P3HBV, synthesized by kinetically resolved ROP of rac-8DLMe-Et, form a stereocomplex with a significantly enhanced Tm (by 53 °C), while the enantiomeric homopolymers do not form a stereocomplex.


Subject(s)
Polyhydroxyalkanoates , Polymerization , 3-Hydroxybutyric Acid , Pentanoic Acids
13.
J Am Chem Soc ; 144(5): 2264-2275, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35084829

ABSTRACT

Two well-known low-ceiling-temperature (LCT) monomers, γ-butyrolactone (γ-BL) toward ring-opening polymerization (ROP) to polyester and cyclohexene toward ring-opening metathesis polymerization (ROMP) to poly(cyclic olefin), are notoriously "nonpolymerizable". Here we present a strategy to render not only polymerizability of both the γ-BL and cyclohexene sites, orthogonally, but also complete and orthogonal depolymerization, through creating an LCT/LCT hybrid, bicyclic lactone/olefin (BiL=). This hybrid monomer undergoes orthogonal polymerization between ROP and ROMP, depending on the catalyst employed, affording two totally different classes of polymeric materials from this single monomer: polyester P(BiL=)ROP via ROP and functionalized poly(cyclic olefin) P(BiL=)ROMP via ROMP. Intriguingly, both P(BiL=)ROP and P(BiL=)ROMP are thermally robust but chemically recyclable under mild conditions (25-40 °C), in the presence of a catalyst, to recover cleanly the same monomer via chain unzipping and scission, respectively. In the ROP, topological and stereochemical controls have been achieved and the structures characterized. Furthermore, the intact functional group during the orthogonal polymerization (i.e., the double bond in ROP and the lactone in ROMP) is utilized for postfunctionalization for tuning materials' thermal and mechanical performances. The impressive depolymerization orthogonality further endows selective depolymerization of both the ROP/ROMP copolymer and the physical blend composites into the same starting monomer.

14.
ChemSusChem ; 15(6): e202102317, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-34927368

ABSTRACT

Activating inert sp3 -sp3 carbon-carbon (C-C) bonds remains a major bottleneck in the chemical upcycling of recalcitrant polyolefin waste. In this study, redox mediators are used to activate the inert C-C bonds. Specifically, N-hydroxyphthalimide (NHPI) is used as the redox mediator, which is oxidized to phthalimide-N-oxyl (PINO) radical to initiate hydrogen atom transfer (HAT) reactions with benzylic C-H bonds. The resulting carbon radical is readily captured by molecular oxygen to form a peroxide that decomposes into oxygenated C-C bond-scission fragments. This indirect approach reduces the oxidation potential by >1.2 V compared to the direct oxidation of the substrate. Studies with model compounds reveal that the selectivity of C-C bond cleavage increases with decreasing C-C bond dissociation energy. With NHPI-mediated oxidation, oligomeric styrene (OS510 ; Mn =510 Da) and polystyrene (PS; Mn ≈10 000 Da) are converted into oxygenated monomers, dimers, and oligomers.


Subject(s)
Carbon , Hydrogen , Carbon/chemistry , Hydrogen/chemistry , Oxidation-Reduction , Oxygen/chemistry
15.
Sci Adv ; 6(34): eabc0495, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32875116

ABSTRACT

Three types of seemingly unyielding trade-offs have continued to challenge the rational design for circular polymers with both high chemical recyclability and high-performance properties: depolymerizability/performance, crystallinity/ductility, and stereo-disorder/crystallinity. Here, we introduce a monomer design strategy based on a bridged bicyclic thiolactone that produces stereo-disordered to perfectly stereo-ordered polythiolactones, all exhibiting high crystallinity and full chemical recyclability. These polythioesters defy aforementioned trade-offs by having an unusual set of desired properties, including intrinsic tacticity-independent crystallinity and chemical recyclability, tunable tacticities from stereo-disorder to perfect stereoregularity, as well as combined high-performance properties such as high thermal stability and crystallinity, and high mechanical strength, ductility, and toughness.

SELECTION OF CITATIONS
SEARCH DETAIL
...