Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(18): 8941-8949, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38644794

ABSTRACT

Single-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites. The obtained catalysts exhibit excellent ORR performance with a half-wave potential of 0.892 V and good stability under alkaline conditions. In addition, the excellent ORR activity and durability of FeCo-N-C enabled the constructed zinc-air battery to exhibit a high power density of 247.93 mW cm-2 and a high capacity of 768.59 mA h gZn-1. Moreover, the AEMFC based on FeCo-N-C also achieved a high open circuit voltage (0.95 V) and rated power density (444.7 mW cm-2), surpassing those of many currently reported transition metal-based cathodes. This work emphasizes the feasibility of this non-precious metal catalyst preparation strategy and its practical applicability in fuel cells and metal-air batteries.

2.
Angew Chem Int Ed Engl ; 63(16): e202401120, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38326521

ABSTRACT

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold great promise for advanced high-resolution organic light-emitting diode (OLED) displays. However, persistent challenges, such as severe aggregation-caused quenching (ACQ) and slow spin-flip, hinder their optimal performance. We propose a synergetic steric-hindrance and excited-state modulation strategy for MR-TADF emitters, which is demonstrated by two blue MR-TADF emitters, IDAD-BNCz and TIDAD-BNCz, bearing sterically demanding 8,8-diphenyl-8H-indolo[3,2,1-de]acridine (IDAD) and 3,6-di-tert-butyl-8,8-diphenyl-8H-indolo[3,2,1-de]acridine (TIDAD), respectively. These rigid and bulky IDAD/TIDAD moieties, with appropriate electron-donating capabilities, not only effectively mitigate ACQ, ensuring efficient luminescence across a broad range of dopant concentrations, but also induce high-lying charge-transfer excited states that facilitate triplet-to-singlet spin-flip without causing undesired emission redshift or spectral broadening. Consequently, implementation of a high doping level of IDAD-BNCz resulted in highly efficient narrowband electroluminescence, featuring a remarkable full-width at half-maximum of 34 nm and record-setting external quantum efficiencies of 34.3 % and 31.8 % at maximum and 100 cd m-2, respectively. The combined steric and electronic effects arising from the steric-hindered donor introduction offer a compelling molecular design strategy to overcome critical challenges in MR-TADF emitters.

3.
Adv Sci (Weinh) ; 11(1): e2306693, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964410

ABSTRACT

Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.

4.
J Am Chem Soc ; 145(46): 25252-25263, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37957828

ABSTRACT

The development of highly active and low-cost oxygen reduction reaction (ORR) catalysts is crucial for the practical application of hydrogen fuel cells. However, the linear scaling relation (LSR) imposes an inherent Sabatier's limitation for most catalysts including the benchmark Pt with an insurmountable overpotential ceiling, impeding the development of efficient electrocatalysts. To avoid such a limitation, using earth-abundant metal oxides with different crystal phases as model materials, we propose an effective and dynamic reaction pathway through constructing spatially correlated Pt-Mn pair sites, achieving an excellent balance between high activity and low Pt loading. Experimental and theoretical calculations demonstrate that manipulating the intermetallic distance and charge distribution of Pt-Mn pairs can effectively promote O-O bond cleavage at these sites through a bridge configuration, circumventing the formation of *OOH intermediates. Meanwhile, the dynamic adsorption configuration transition from the bridge configuration of O2 to the end-on configuration of *OH improves *OH desorption at the Mn site within such pairs, thereby avoiding Sabatier's limitation. The well-designed Pt-Mn/ß-MnO2 exhibits outstanding ORR activity and stability with a half-wave potential of 0.93 V and barely any activity degradation for 70 h. When applied to the cathode of a H2-O2 anion-exchange membrane fuel cell, this catalyst demonstrates a high peak power density of 287 mW cm-2 and 500 h of stability under a cell voltage of 0.6 V. This work reveals the adaptive bonding interactions of atomic pair sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed ORR catalysts beyond the Sabatier optimum.

5.
Adv Sci (Weinh) ; 10(29): e2304071, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37551998

ABSTRACT

The development of efficient and economical electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the sustainable production of renewable fuels and energy storage systems; however, the sluggish OER kinetics involving multistep four proton-coupled electron transfer hampers progress in these systems. Fortunately, surface reconstruction offers promising potential to improve OER catalyst design. Anion modulation plays a crucial role in controlling the extent of surface reconstruction and positively persuading the reconstructed species' performances. This review starts by providing a general explanation of how various types of anions can trigger dynamic surface reconstruction and create different combinations with pre-catalysts. Next, the influences of anion modulation on manipulating the surface dynamic reconstruction process are discussed based on the in situ advanced characterization techniques. Furthermore, various effects of survived anionic groups in reconstructed species on water oxidation activity are further discussed. Finally, the challenges and prospects for the future development directions of anion modulation for redirecting dynamic surface reconstruction to construct highly efficient and practical catalysts for water oxidation are proposed.

6.
Nat Commun ; 14(1): 4127, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438355

ABSTRACT

Surface reconstruction generates real active species in electrochemical conditions; rational regulating reconstruction in a targeted manner is the key for constructing highly active catalyst. Herein, we use the high-valence Mo modulated orthorhombic Pr3Ir1-xMoxO7 as model to activate lattice oxygen and cations, achieving directional and accelerated surface reconstruction to produce self-terminated Ir‒Obri‒Mo (Obri represents the bridge oxygen) active species that is highly active for acidic water oxidation. The doped Mo not only contributes to accelerated surface reconstruction due to optimized Ir‒O covalency and more prone dissolution of Pr, but also affords the improved durability resulted from Mo-buffered charge compensation, thereby preventing fierce Ir dissolution and excessive lattice oxygen loss. As such, Ir‒Obri‒Mo species could be directionally generated, in which the strong Brønsted acidity of Obri induced by remaining Mo assists with the facilitated deprotonation of oxo intermediates, following bridging-oxygen-assisted deprotonation pathway. Consequently, the optimal catalyst exhibits the best activity with an overpotential of 259 mV to reach 10 mA cmgeo-2, 50 mV lower than undoped counterpart, and shows improved stability for over 200 h. This work provides a strategy of directional surface reconstruction to constructing strong Brønsted acid sites in IrOx species, demonstrating the perspective of targeted electrocatalyst fabrication under in situ realistic reaction conditions.

7.
Nat Commun ; 14(1): 4562, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507418

ABSTRACT

The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.

8.
ACS Appl Mater Interfaces ; 15(5): 6912-6922, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36718123

ABSTRACT

The oxygen evolution reaction (OER) severely limits the efficiency of proton exchange membrane (PEM) electrolyzers due to slow reaction kinetics. IrO2 is currently a commonly used anode catalyst, but its large-scale application is limited due to its high price and scarce reserves. Herein, we reported a practical strategy to construct an acid OER catalyst where Iridium oxide loading and iridium element bulk doping are realized on the surface and inside of W18O49 nanowires by immersion adsorption, respectively. Specifically, W0.7Ir0.3Oy has an overpotential of 278 mV at 10 mA·cm-2 in 0.1 M HClO4. The mass activity of 714.10 A·gIr-1 at 1.53 V vs. the reversible hydrogen electrode (RHE) is 80 times that of IrO2, and it can run stably for 55 h. In the PEM water electrolyzer device, its mass activity reaches 3563.63 A·gIr-1 at the cell voltage of 2.0 V. This improved catalytic performance is attributed to the following aspects: (1) The electron transport between iridium and tungsten effectively improves the electronic structure of the catalyst; (2) the introduction of iridium into W18O49 by means of elemental bulk doping and nanoparticles supporting for the enhanced conductivity and electrochemically active surface area of the catalyst, resulting in extensive exposure of active sites and increased intrinsic activity; and (3) during the OER process, partial iridium elements in the bulk phase are precipitated, and iridium oxide is formed on the surface to maintain stable activity. This work provides a new idea for designing oxygen evolution catalysts with low iridium content for practical application in PEM electrolyzers.

9.
Adv Sci (Weinh) ; 10(4): e2205540, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36480314

ABSTRACT

The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.

10.
Sci Bull (Beijing) ; 67(4): 389-397, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-36546091

ABSTRACT

Nature-inspired artificial Z-scheme photocatalyst offers great promise in solar overall water splitting, but its rational design, construction and interfacial charge transfer mechanism remain ambiguous. Here, we design an approach of engineering interfacial band bending via work function regulation, which realizes directional charge transfer at interface and affords direct Z-scheme pathway. Taking BiVO4 as prototype, its oxygen vacancy concentration is reduced by slowing down the crystallization rate, thereby changing the work function from smaller to larger than that of polymeric carbon nitride (PCN). Consequently, the photoinduced charge transfer pathway of BiVO4/PCN is switched from type-II to Z-scheme as evidenced by synchronous illuminated X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption spectroscopy. Specifically, the direct Z-scheme BiVO4/PCN shows superior photocatalytic performance in water splitting. This work provides deep insights and guidelines to constructing heterojunction photocatalysts for solar utilization.

11.
Chemistry ; 28(72): e202202593, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36106822

ABSTRACT

Photocatalysis can create a green way to produce clean energy resources, degrade pollutants and achieve carbon neutrality, making the construction of efficient photocatalysts significant in solving environmental issues. Conjugated polymers (CPs) with adjustable band structures have superior light-absorption capacity and flexible morphology that facilitate contact with other components to form advanced heterojunctions. Interface engineering can strengthen the interfacial contact between the components and further enlarge the interfacial contact area, enhance light absorption, accelerate charge transfer and improve the reusability of the composites. In order to throw some new light on heterojunction interface regulation at a molecular level, herein we summarize CP-based composites with improved photocatalytic performance according to the types of interactions (covalent bonding, hydrogen bonding, electrostatic interactions, π-π stacking, and other polar interactions) between the components and introduce the corresponding interface building methods, identifying techniques. Then the roles of interfaces in different photocatalytic applications are discussed. Finally, we sum up the existing problems in interface engineering of CP-based composites and look forward to the possible solutions.

12.
Comput Intell Neurosci ; 2022: 1482250, 2022.
Article in English | MEDLINE | ID: mdl-35990143

ABSTRACT

Clustering algorithm is a statistical method to study sample classification. With the rapid development of science and technology, people have higher and higher requirements for data classification, so there are more and more researches on clustering in modern society. Various mathematical algorithms are introduced to further improve the accuracy of clustering. Therefore, this paper proposes an improved SOM neural network algorithm to evaluate the comprehensive quality of students. SOM neural network can automatically find the internal laws and essential attributes in the samples, self-organize and adaptively change the network parameters and structure, and realize the classification of samples. Factor analysis is introduced to reduce the dimension of input layer in SOM neural network analysis, better process high-dimensional data, and improve the speed and accuracy of the algorithm. The improved SOM neural network algorithm can be used for the cluster analysis of the comprehensive quality of college students. The algorithm simulation results show that the improved neural network algorithm can intuitively evaluate the comprehensive quality of students and reflect the overall characteristics of each type of student.


Subject(s)
Algorithms , Neural Networks, Computer , Cluster Analysis , Computer Simulation , Humans
13.
Adv Sci (Weinh) ; 9(18): e2200307, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35435329

ABSTRACT

The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.

14.
Chem Commun (Camb) ; 58(20): 3362-3365, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35188505

ABSTRACT

Chiral pillar[5]arene-functionalized silica microspheres were prepared and characterized for the first time, and can be used as a new kind of chiral stationary phase for effective enantioseparation under reversed-phase and normal phase modes with good reproducibility and stability.

15.
Chemistry ; 27(70): 17628-17636, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34648677

ABSTRACT

Improving the insufficient carrier separation dynamics is still of significance in carbon nitride (C3 N4 ) research. Extensive research has been devoted to improving the carrier separation efficiency through a single strategy, while ignoring the synergistic enhancement effect produced by coupling two or more conventional strategies. Herein, we reported the fabrication of cyano group-containing Fe-doped C3 N4 porous materials via direct co-calcination of iron acetylacetonate and melamine for synergistically improving the photocatalytic performance. Iron acetylacetonate can promote the generation of cyano groups and form Fe-doping in C3 N4 , thereby increasing the visible-light absorption and reactive sites. Further, the internal donor-acceptor system formed by cyano groups and Fe-doped sites promoted charge carrier separation and inhibited the radiation recombination of e- -h+ pairs. The optimized photocatalytic activity of Fe-CN-2 sample was 4.5 times of bulk C3 N4 (BCN).

16.
Chem Asian J ; 15(22): 3599-3619, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32931134

ABSTRACT

Photocatalysis via direct solar-to-chemical energy conversion is an intriguing approach for alleviating the pressure of high energy consumption caused by social development. However, photocatalytic efficiency is greatly restricted by unsatisfactory light-harvesting capacity, high carrier recombination rates, and sluggish reaction kinetics. Indeed, vacancy engineering is an attractive strategy to regulate photocatalytic reaction performance to maximize the utilization and storage of solar energy. In this review, we summarize recent progress about the important roles of vacancy defects on solar-driven photocatalytic applications. The current advanced characterization techniques, especially for in situ/operando techniques, are first presented for elucidating the structure-performance relationships of defective semiconductors in photocatalysis. Subsequently, the crucial roles of vacancies in enhancing photocatalytic performance are highlighted from three important processes: light absorption, carrier separation and migration, and surface reaction. Finally, based on the above understanding, perspectives and opportunities about defective materials are considered for various photocatalytic applications.

17.
Chem Commun (Camb) ; 56(41): 5540-5543, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32297613

ABSTRACT

Carbon nanotube (CNT)-supported Ni-modified MoS2 catalysts with ultra-high loading were synthesized with the assistance of citric acid. The morphology of the nanoflake arrays could be controlled to give abundant stepped sites, which favored the hydrogenation desulfurization pathway of dibenzothiophene. The catalyst exhibited excellent performance and stability for hydrodesulfurization of model oil and coal-to-liquid fuel.

18.
ACS Appl Mater Interfaces ; 12(21): 23995-24006, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32329603

ABSTRACT

The study on the design and preparation of oxygen reduction reaction (ORR) electrocatalysts with high efficiency is currently attracting great concern. Among different types of catalysts, heteroatom-doped carbon-based catalysts have exhibited promising potential, and the exploration of optimized matching of the doping elements is crucial to the design and fabrication of this category of catalysts. Herein, by annealing commercially available and cost-effective precursors, Fe-N-S codoped graphene-like carbon nanosheet catalysts were prepared. The atomically dispersed Fe atoms coordinated with the N atoms to form FeN4 sites as proved by X-ray absorption spectroscopy. By facile modulation of the relative amount of the precursors, the contents of thiophene-S (Th-S) and Fe-N4 sites could be tuned and a series of catalysts with different Th-S/Fe ratios were prepared. The doped sulfur exhibited an enhancement effect on ORR performance, and strikingly, the enhancement efficiency could be optimized by fine modulation of the Th-S/Fe ratio in the catalysts. Furthermore, it was found that when the Th-S/Fe ratio reached an optimal value of 1.8, the ORR performance was significantly boosted, especially in acidic media. The experimental data were supported by density functional theory calculation results, which indicated that the ORR overpotential of the S2(FeN4) configuration model (corresponding to the Th-S/Fe ratio of 2) was lower than that of S3(FeN4) and S1(FeN4). The optimized catalyst (denoted as FeN/SNC-900-3) displayed highly efficient ORR activity in both alkaline and acidic media. In alkaline media, the half-wave potential was 49 mV more positive than that of the commercial Pt/C catalyst, and in acidic media, the half-wave potential was close to that of Pt/C. Moreover, the stability of FeN/SNC-900-3 was outstanding, and the relative current density showed only a slight decay in both alkaline and acidic media after 40,000 s. A primary Zn-air battery with FeN/SNC-900-3 as the cathode catalyst exhibited a high peak power density of up to 153 mW cm-2 and superior cycling stability over 200 cycles.

19.
Langmuir ; 36(8): 1851-1863, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32036669

ABSTRACT

Hierarchically porous materials have attracted great attention because of their potential applications in the fields of adsorption, catalysis, and biomedical systems. The art of manipulating different templates that are used for pore construction is the key to fabricating desired hierarchically porous structures. In this feature article, the polyelectrolyte-surfactant mesomorphous complex templating (PSMCT) approach, which was first developed by our group, is elaborated on. During the organic-inorganic self-assembly, the mesomorphous complex of the polyelectrolyte and oppositely charged surfactants would undergo in situ phase separation, which is the key to fabricating hierarchically porous materials. The recent progress in the utilization of the PSMCT method for the synthesis of hierarchically porous materials with tunable morphologies, mesophases, pore structures, and compositions is reviewed. Meanwhile, the functions of the hierarchically porous materials synthesized by the PSMCT method and their applications in adsorption, catalysis, drug delivery, and nanocasting are also briefly summarized.

20.
Nanoscale ; 12(8): 4790-4815, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32073021

ABSTRACT

The shortage of water resources and increasingly serious water pollution have driven the development of high-efficiency water treatment technology. Among a variety of technologies, adsorption is widely used in environmental remediation. As a class of typical adsorbents, metal oxides have been developed for a long time and continued to attract widespread attention, since they have unique physicochemical properties, including abundant surface active sites, high chemical stability, and adjustable shape and size. In this review, the basic principles of the adsorption process will be first elucidated, including affecting factors, evaluation index, adsorption mechanisms, and common kinetic and isotherm models. Then, the adsorption properties of several typical metal oxides, and key parameters affecting the adsorption performance such as particle/pore size, morphology, functionalization and modification, supports and calcination temperature will be discussed, as well as their application in the removal of various inorganic and organic contaminants. In addition, desorption and recycling of the spent adsorbent are summarized. Finally, the future development of metal oxide based adsorbents is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...