Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 26(3): 1622-1636, 2020 03.
Article in English | MEDLINE | ID: mdl-30281461

ABSTRACT

The research on massive open online courses (MOOCs) data analytics has mushroomed recently because of the rapid development of MOOCs. The MOOC data not only contains learner profiles and learning outcomes, but also sequential information about when and which type of learning activities each learner performs, such as reviewing a lecture video before undertaking an assignment. Learning sequence analytics could help understand the correlations between learning sequences and performances, which further characterize different learner groups. However, few works have explored the sequence of learning activities, which have mostly been considered aggregated events. A visual analytics system called ViSeq is introduced to resolve the loss of sequential information, to visualize the learning sequence of different learner groups, and to help better understand the reasons behind the learning behaviors. The system facilitates users in exploring learning sequences from multiple levels of granularity. ViSeq incorporates four linked views: the projection view to identify learner groups, the pattern view to exhibit overall sequential patterns within a selected group, the sequence view to illustrate the transitions between consecutive events, and the individual view with an augmented sequence chain to compare selected personal learning sequences. Case studies and expert interviews were conducted to evaluate the system.

2.
IEEE Trans Vis Comput Graph ; 22(6): 1640-1651, 2016 06.
Article in English | MEDLINE | ID: mdl-28113856

ABSTRACT

Stacked graphs have been widely adopted in various fields, because they are capable of hierarchically visualizing a set of temporal sequences as well as their aggregation. However, because of visual illusion issues, connections between overly-detailed individual layers and overly-generalized aggregation are intercepted. Consequently, information in this area has yet to be fully excavated. Thus, we present PieceStack in this paper, to reveal the relevance of stacked graphs in understanding intrinsic details of their displayed shapes. This new visual analytic design interprets the ways through which aggregations are generated with individual layers by interactively splitting and re-constructing the stacked graphs. A clustering algorithm is designed to partition stacked graphs into sub-aggregated pieces based on trend similarities of layers. We then visualize the pieces with augmented encoding to help analysts decompose and explore the graphs with respect to their interests. Case studies and a user study are conducted to demonstrate the usefulness of our technique in understanding the formation of stacked graphs.

3.
IEEE Trans Vis Comput Graph ; 22(1): 280-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529707

ABSTRACT

Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.


Subject(s)
Computer Graphics , Internet , Social Media , Humans , Social Behavior , User-Computer Interface
4.
IEEE Trans Vis Comput Graph ; 22(1): 559-68, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529718

ABSTRACT

We introduce time curves as a general approach for visualizing patterns of evolution in temporal data. Examples of such patterns include slow and regular progressions, large sudden changes, and reversals to previous states. These patterns can be of interest in a range of domains, such as collaborative document editing, dynamic network analysis, and video analysis. Time curves employ the metaphor of folding a timeline visualization into itself so as to bring similar time points close to each other. This metaphor can be applied to any dataset where a similarity metric between temporal snapshots can be defined, thus it is largely datatype-agnostic. We illustrate how time curves can visually reveal informative patterns in a range of different datasets.

5.
IEEE Trans Vis Comput Graph ; 22(10): 2315-30, 2016 10.
Article in English | MEDLINE | ID: mdl-26661473

ABSTRACT

Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

6.
IEEE Trans Vis Comput Graph ; 20(12): 1733-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356887

ABSTRACT

The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.


Subject(s)
Computer Graphics , Consumer Behavior/statistics & numerical data , Internet , Models, Statistical , Search Engine/statistics & numerical data , Algorithms , Humans , United States
7.
IEEE Trans Vis Comput Graph ; 18(12): 2669-78, 2012 Dec.
Article in English | MEDLINE | ID: mdl-26357176

ABSTRACT

For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.

8.
IEEE Trans Vis Comput Graph ; 17(12): 2412-21, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22034362

ABSTRACT

Understanding how topics evolve in text data is an important and challenging task. Although much work has been devoted to topic analysis, the study of topic evolution has largely been limited to individual topics. In this paper, we introduce TextFlow, a seamless integration of visualization and topic mining techniques, for analyzing various evolution patterns that emerge from multiple topics. We first extend an existing analysis technique to extract three-level features: the topic evolution trend, the critical event, and the keyword correlation. Then a coherent visualization that consists of three new visual components is designed to convey complex relationships between them. Through interaction, the topic mining model and visualization can communicate with each other to help users refine the analysis result and gain insights into the data progressively. Finally, two case studies are conducted to demonstrate the effectiveness and usefulness of TextFlow in helping users understand the major topic evolution patterns in time-varying text data.

SELECTION OF CITATIONS
SEARCH DETAIL
...