Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 03.
Article in English | MEDLINE | ID: mdl-38213020

ABSTRACT

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Subject(s)
Histones , Nuclear Proteins , Histones/genetics , Histones/metabolism , Histones/pharmacology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , C9orf72 Protein/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/pharmacology , DNA Repeat Expansion , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/pharmacology , Dipeptides/genetics , Dipeptides/metabolism , Dipeptides/pharmacology , Cell Death/genetics
2.
Oncogenesis ; 12(1): 56, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985752

ABSTRACT

Although the transcriptional regulation of the programmed death ligand 1 (PD-L1) promoter has been extensively studied, the transcription factor residing in the PD-L1 super-enhancer has not been comprehensively explored. Through saturated CRISPR-Cas9 screening of the core region of the PD-L1 super-enhancer, we have identified a crucial genetic locus, referred to as locus 22, which is essential for PD-L1 expression. Locus 22 is a potential binding site for NFE2:MAF transcription factors. Although genetic silencing of NRF2 (NFE2L2) did not result in a reduction of PD-L1 expression, further analysis reveals that MAFG and NFE2L1 (NRF1) play a critical role in the expression of PD-L1. Importantly, lipopolysaccharides (LPS) as the major component of intratumoral bacteria could greatly induce PD-L1 expression, which is dependent on the PD-L1 super-enhancer, locus 22, and NFE2L1/MAFG. Mechanistically, genetic modification of locus 22 and silencing of MAFG greatly reduce BRD4 binding and loop formation but have minimal effects on H3K27Ac modification. Unlike control cells, cells with genetic modification of locus 22 and silencing of NFE2L1/MAFG failed to escape T cell-mediated killing. In breast cancer, the expression of MAFG is positively correlated with the expression of PD-L1. Taken together, our findings demonstrate the critical role of locus 22 and its associated transcription factor NFE2L1/MAFG in super-enhancer- and LPS-induced PD-L1 expression. Our findings provide new insight into understanding the regulation of PD-L1 transcription and intratumoral bacteria-mediated immune evasion.

3.
Genes (Basel) ; 14(8)2023 08 13.
Article in English | MEDLINE | ID: mdl-37628671

ABSTRACT

The 3'-untranslated region (3'-UTR) of PD-L1 is significantly longer than the coding sequences (CDSs). However, its role and regulators have been little studied. We deleted whole 3'-UTR region by CRISPR-Cas9. Prognostic analysis was performed using online tools. Immune infiltration analysis was performed using the Timer and Xcell packages. Immunotherapy response prediction and Cox regression was performed using the R software. MicroRNA network analysis was conducted by the Cytoscape software. The level of PD-L1 was significantly and dramatically up-regulated in cells after deleting the 3'-UTR. Additionally, we discovered a panel of 43 RNA-binding proteins (RBPs) whose expression correlates with PD-L1 in the majority of cancer cell lines and tumor tissues. Among these RBPs, PARP14 is widely associated with immune checkpoints, the tumor microenvironment, and immune-infiltrating cells in various cancer types. We also identified 38 microRNAs whose individual expressions are associated with PD-L1 across different cancers. Notably, miR-3139, miR-4761, and miR-15a-5p showed significant associations with PD-L1 in most cancer types. Furthermore, we revealed 21 m6A regulators that strongly correlate with PD-L1. Importantly, by combining the identified RBP and m6A regulators, we established an immune signature consisting of RBMS1, QKI, ZC3HAV1, and RBM38. This signature can be used to predict the responsiveness of cancer patients to immune checkpoint blockade treatment. We demonstrated the critical role of the 3'-UTR in the regulation of PD-L1 and identified a significant number of potential PD-L1 regulators across various types of cancer. The biomarker signature generated from our findings shows promise in predicting patient prognosis. However, further biological investigation is necessary to explore the potential of these PD-L1 regulators.


Subject(s)
MicroRNAs , Neoplasms , Humans , B7-H1 Antigen/genetics , MicroRNAs/genetics , Neoplasms/genetics , 3' Untranslated Regions , Cell Line , Tumor Microenvironment/genetics , DNA-Binding Proteins , RNA-Binding Proteins/genetics
4.
Expert Rev Mol Med ; 25: e25, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37503730

ABSTRACT

The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.


Subject(s)
NF-kappa B , Neoplasms , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , I-kappa B Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/etiology , Neovascularization, Pathologic/metabolism , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...