Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Biotechnol ; 34(9): 4783-4792, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37022008

ABSTRACT

The proliferation and myogenic differentiation of muscle stem cells (MuSCs) are important factors affecting muscle development and beef quality. There is increasing evidence that circRNAs can regulate myogenesis. We found a novel circRNA, named circRRAS2 that is significantly upregulated in the differentiation phase of bovine MuSCs. Here, we aimed to determine its roles in the proliferation and myogenic differentiation of these cells. The results showed that circRRAS2 was expressed in several bovine tissues. CircRRAS2 inhibited MuSCs proliferation and promoted myoblast differentiation. In addition, chromatin isolation by using RNA purification and mass spectrometry in differentiated muscle cells identified 52 RNA-binding proteins that could potentially bind to circRRAS2, in order to regulate their differentiation. The results suggest that circRRAS2 could be a specific regulator of myogenesis in bovine muscle.HighlightsCircRRAS2 expression is higher in DM cells than in GM cells.CircRRAS2 could significantly inhibit the proliferation and apoptosis of bovine MuSCs.CircRRAS2 promotes the differentiation of bovine MuSCs into myotubes.CircRRAS2 may exert regulatory effects through multiple RNA binding proteins.


Subject(s)
Satellite Cells, Skeletal Muscle , Cattle , Animals , Cell Differentiation/genetics , Cells, Cultured , Cell Line , Muscle Development/genetics , Muscle, Skeletal/metabolism , Cell Proliferation/genetics
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834471

ABSTRACT

Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.


Subject(s)
Carcinoma , Exosomes , Extracellular Vesicles , Melanoma , Sarcoma , Humans , Exosomes/metabolism , Sarcoma/metabolism , Carcinoma/metabolism , Melanoma/metabolism
3.
BMC Genomics ; 23(1): 267, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387588

ABSTRACT

BACKGROUND: The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases. RESULTS: Two thousand one hundred forty-eight mRNAs and 888 non-coding RNAs were differentially expressed between cell proliferation and differentiation phases, including 113 miRNAs, 662 lncRNAs, and 113 circRNAs. RT-qPCR verified the differential expression levels of mRNAs and non-coding RNAs, and the differentially expressed circUBE2Q2 was subsequently characterized. Expression profile analysis revealed that circUBE2Q2 was abundant in muscle tissues and intramuscular fat. The expression of cricUBE2Q2 was also significantly upregulated during MuSCs myogenic differentiation and SVFs adipogenic differentiation and decreased with age in cattle muscle tissue. Finally, the molecular mechanism of circUBE2Q2 regulating MuSCs function that affects skeletal muscle development was investigated. The results showed that circUBE2Q2 could serve as a sponge for miR-133a, significantly promoting differentiation and apoptosis of cultured MuSCs, and inhibiting proliferation of MuSCs. CONCLUSIONS: CircUBE2Q2 is associated with muscle growth and development and induces MuSCs myogenic differentiation through sponging miR-133a. This study will provide new clues for the mechanisms by which mRNAs and non-coding RNAs regulate skeletal muscle growth and development, affecting muscle quality and diseases.


Subject(s)
MicroRNAs , Muscle Development , Animals , Cattle , Cell Differentiation/genetics , China , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscles/metabolism , Myoblasts/metabolism , RNA, Messenger/genetics
4.
Mol Reprod Dev ; 84(11): 1183-1190, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28833824

ABSTRACT

The sperm protein IZUMO1 plays a central role in gamete fusion. In mouse sperm, IZUMO1 is enriched at the acrosomal cap before the acrosome reaction, and at the equatorial segment following this reaction; its relocation is dependent on filamentous actin. How actin polymerization affects IZUMO1 relocation during gamete interaction remains unknown. The present study addressed these processes using latrunculin A (LatA), an inhibitor of actin polymerization. We report that 25 µM LatA blocked actin polymerization in the capacitated sperm head, resulting in a marked decrease in sperm with relocated IZUMO1 during the A23187-induced acrosome reaction and cumulus layer penetration. Treated sperm also exhibited reduced zona pellucida penetration and fertilizing capacity. Interestingly, LatA-treated sperm present in the perivitelline space of eggs did not show impaired IZUMO1 relocation. Thus, IZUMO1 relocation represents one method by which eggs may select for or rescue sperm that are competent to undergo gamete adhesion/fusion. These data support the hypothesis that dynamic movement of IZUMO1 is essential for gamete fusion during mouse fertilization.


Subject(s)
Acrosome Reaction/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Oocytes/metabolism , Spermatozoa/metabolism , Thiazolidines/pharmacology , Actins/metabolism , Animals , Female , Male , Mice , Mice, Inbred ICR , Oocytes/cytology , Protein Transport/drug effects , Spermatozoa/cytology
5.
In Vitro Cell Dev Biol Anim ; 51(2): 103-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25424832

ABSTRACT

Factors influencing porcine oocyte activation were systematically studied. This study included (1) the effect of ionomycin plus various chemical agents on activation, (2) comparison of different electrical activation parameters, (3) optimization of combined activation, and (4) evaluation of the optimized protocols. The results showed that (1) blastocyst rates of ionomycin (Ion) + 6-dimethylaminopurine (6-DMAP) (29.7 ± 1.1%), Ion + cytochalasin B (CB) + cycloheximide (CHX) (29.8 ± 1.2%), Ion + CB + 6-DMAP (30.4 ± 1.6%), and Ion + CB + CHX + 6-DMAP (30.2 ± 2.7%) were significantly higher than Ion + CHX (15.8 ± 1.5%, p < 0.05); (2) the parthenogenetic blastocyst formation of electrical activation was optimal when oocytes were activated by three direct current (DC) pulses of 1.00 kV cm(-1) for 80 µs (39.5 ± 1.1%); (3) blastocyst rates of DC + CB + CHX (55.4 ± 1.2%) and DC + CB + 6-DMAP (50.4 ± 2.9%) were significantly higher than DC + 6-DMAP, DC + CB + CHX + 6-DMAP, electrical activation, and chemical activation alone (p < 0.05); and (4) approximately 84% of parthenogenetic blastocysts yielded by the optimized protocol were diploid, which was significantly higher than that of electrical activation blastocysts (40%). Using the optimized electrical and combined activation protocol, high blastocyst rates were generated by intracytoplasmic sperm injection (ICSI) (34.6 ± 1.1%), cytoplasmic microinjection (CI) (52.3 ± 2.2%), and handmade cloning (HMC) (31.2 ± 1.0%), respectively. This study concludes that the optimal activation protocol of in vitro matured porcine oocytes was combined activation with parameter as three DC pulses of 1.00 kV cm(-1) for 80 µs plus CB and CHX treatment.


Subject(s)
Blastocyst , In Vitro Oocyte Maturation Techniques/methods , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Blastocyst/physiology , Calcium/metabolism , Cycloheximide/pharmacology , Diploidy , Electric Stimulation , Female , Ionomycin/pharmacology , Male , Oocytes/drug effects , Oocytes/physiology , Parthenogenesis , Sperm Injections, Intracytoplasmic , Swine
6.
In Vitro Cell Dev Biol Anim ; 50(1): 7-15, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23990385

ABSTRACT

To establish fibroblast cell lines from different tissues and to compare the biological characteristics of those cell lines, five fibroblast cell lines derived from Chinese swamp buffalo (Bubalus bubalis) were selected for comparative assays. Cell style and survival rate (before cryogenic preservation and after recovery) were tested, and karyotype, patterns of isoenzymes of lactic dehydrogenase, malic dehydrogenase, and cell cycle were analyzed. These cell lines had a healthy morphology with a typical spindle shape, and assessment of cell style showed these cells to be very pure fibroblasts. Cell growth curves showed a typical "S" shape. Results of microorganism contamination assays were negative, and isoenzyme analysis showed no cross-contamination. The number of chromosomes (2n) of swamp buffalo is 48. Between 28% and 46% of the cells were 2n, and cell apoptosis was not pronounced at 20th generation. Results showed that skin fibroblasts were more adaptable to tissue culture conditions than the ones from kidneys and ear margin, and they are more suitable for cellular manipulation in Chinese swamp buffalo.


Subject(s)
Buffaloes , Cell Line , Fibroblasts/cytology , Animals , Chromosomes, Mammalian , Fibroblasts/metabolism , Fibroblasts/physiology , Karyotype , Kidney/cytology , Skin/cytology
7.
Mol Biol Rep ; 40(2): 743-50, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23232712

ABSTRACT

Cattle and water buffalo belong to the same subfamily Bovinae and share chromosome banding and gene order homology. In this study, we used genome-wide Illumina BovineSNP50 BeadChip to analyze 91 DNA samples from three breeds of water buffalo (Nili-Ravi, Murrah and their crossbred with local GuangXi buffalos in China), to demonstrate the genetic divergence between cattle and water buffalo through a large single nucleotide polymorphism (SNP) transferability study at the whole genome level, and performed association analysis of functional traits in water buffalo as well. A total of 40,766 (75.5 %) bovine SNPs were found in the water buffalo genome, but 49,936 (92.5 %) were with only one allele, and finally 935 were identified to be polymorphic and useful for association analysis in water buffalo. Therefore, the genome sequences of water buffalo and cattle shared a high level of homology but the polymorphic status of the bovine SNPs varied between these two species. The different patterns of mutations between species may associate with their phenotypic divergence due to genome evolution. Among 935 bovine SNPs, we identified a total of 9 and 7 SNPs significantly associated to fertility and milk production traits in water buffalo, respectively. However, more works in larger sample size are needed in future to verify these candidate SNPs for water buffalo.


Subject(s)
Buffaloes/genetics , Cattle/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Chromosomes, Mammalian/genetics , Evolution, Molecular , Female , Fertility/genetics , Gene Frequency , Genotyping Techniques , Heterozygote , Lactation/genetics , Milk/metabolism , Models, Genetic , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
8.
Cell Biol Int ; 31(10): 1079-88, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17532234

ABSTRACT

There have been few studies done on the isolation and characterization of Chinese swamp buffalo embryonic germ cells (EG cells). Here, we first report on EG-like cells isolated from Chinese swamp buffalo fetuses. The results showed the cells grew in large, multilayered colonies, which were densely packed with an obvious border resembling mouse embryonic stem cells (ES cells) and EG cells. The buffalo EG-like cells expressed AP, SSEA-1, SSEA-3, SSEA-4 and OCT-4. By RT-PCR, we found that undifferentiated swamp buffalo EG-like cells expressed the OCT-4, NANOG, SOX2, FOXD3, GP130, STAT3, and HEB gene mRNA, but not Fgf4. When these cells were cultured for more than 2weeks without passage, they could differentiate into several types of cells including fibroblast-like, neuron-like, smooth muscle-like, and epithelial-like cells. Some cells formed simple embryoid bodies (EBs) and cystic EBs by suspension culture. By RT-PCR, we found cystic EBs expressed FOXD3, GP130, STAT3 and HEB gene mRNA, but not OCT-4, NANOG, and SOX2 gene mRNA, which could be detected in undifferentiated buffalo EG-like cells. At the same time, the expression of KERATIN-14 (Endoderm), GATA4, ACTA2 (Mesoderm) and TUBB3 (Ectoderm) gene mRNA were also detected in cystic EBs. The results suggested that these cells were capable of forming three germ layers in in vitro differentiation. The expression of OCT-4, NANOG and SOX2 might be essential for Chinese swamp buffalo EG-like cells in a pluripotent state. During the isolation and culture of Chinese swamp buffalo EG-like cells, we found the fetuses that were at 30-80days post-coitus were more efficient than others; and the mechanical method was better than trypsin digestion. The maximal passage of the mechanical method was eight, but the trypsin digestion was just three passages. So it seemed like that the buffalo EG-like cells were sensitive to trypsin. In summary, we were the first to isolate and characterize Chinese swamp buffalo EG-like cells that had morphology and characterization similar to those of established EG/EG-like cells in mouse and human.


Subject(s)
Buffaloes/embryology , Embryonic Stem Cells/cytology , Animals , Biomarkers/metabolism , Cell Differentiation , Cells, Cultured , Embryo Culture Techniques , Endoderm/cytology , Endoderm/metabolism , Female , Humans , Mesoderm/cytology , Mesoderm/metabolism , Mice , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...