Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Biomed Pharmacother ; 176: 116844, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823279

ABSTRACT

In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.


Subject(s)
Disease Progression , Neoplasms , Neurotransmitter Agents , Humans , Neurotransmitter Agents/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Animals , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism
2.
Article in English | MEDLINE | ID: mdl-38748527

ABSTRACT

Large capacitive loading of electrodes induces massive error current and imperfect settling in the electrochemical signal acquisition process, leading to inaccurate acquisition results. To efficiently mitigate this inaccuracy, this paper presents a current-and-voltage dual-mode acquisition technique in which a voltage front-end (VFE) is employed to acquire the electrode voltage error and compensate the nonlinearity induced by the electrode capacitive loading. Therefore, the gain and bandwidth requirements of the current front end (CFE) can be relaxed to reduce the complexity and power consumption. With a relieved gain requirement, an inverter-based capacitive trans-impedance amplifier (IB-CTIA) is adopted to boost the input transconductance for low-noise design. By reusing the supply current, the IB-CTIA effectively achieves a low input-referred current noise of 3.9 pArms and a dynamic range (DR) of 126 dB with only 18-µW static power. The prototype chip is fabricated in a 180-nm CMOS process. Interleukin-6 immunoassays (IL-6) are implemented to verify the chip's performance. With the proposed nonlinear error compensation, the correlation coefficient of the detection result is improved from 0.951 to 0.980 and the limit of detection (LoD) is reduced from 8.31 pg/mL to 6.90 pg/mL.

3.
Cell Signal ; 117: 111072, 2024 05.
Article in English | MEDLINE | ID: mdl-38307306

ABSTRACT

BACKGROUND: Cuproptosis is a novel form of cell death that exhibits close association with mitochondrial respiration and occurs through distinct mechanisms compared to previously characterized forms of cell death. However, the precise impact of cuproptosis-associated genes (CAGs) on prognosis, immune profiles, and treatment efficacy in hepatocellular carcinomas (HCC) remains poorly understood. METHODS: A comprehensive analysis of CAGs in hepatocellular carcinoma (HCC) prognosis was conducted using genomic data from HCC patients. Consensus clustering analysis was performed to determine molecular subtypes related to cuproptosis in HCC. The single-sample gene set enrichment analysis (ssGSEA) algorithm was applied to quantify the infiltration levels of immune cells, while the "ESTIMATE" package was employed to calculate tumor purity, stromal scores, and immune scores in the tumor microenvironment (TME). Principal component analysis (PCA) algorithm was utilized to construct a risk score related to CAGs. Finally, CCK8, wound healing, Transwell migration/invasion, EDU and xenograft model were employed to explore the potential oncogenic role of MTF1. RESULTS: Three distinct patterns of cuproptosis modification were identified, each associated with unique functional enrichments, clinical characteristics, immune cell infiltration, immune checkpoints, tumor microenvironment (TME), and prognosis. A CAGs-related risk score (Cuscore) was developed to predict prognosis in TCGA and validated in GSE76427 and ICGC datasets. Notably, patients with a low Cuscore had better prognoses and were more likely to benefit from immunotherapy.Additionally, the high Cuscore group in HCC also revealed three potential therapeutic targets (TUBA1B, CDC25B, and CSNK2A1) as well as several therapeutic compounds. Moreover, the experiment measured the expression levels of six prognosis-related CAGs, wherein knockdown of MTF1 exhibited suppression of proliferation, invasion, and migration formation in HCC cell lines. CONCLUSION: The findings have enhanced our comprehension of the cuproptosis characteristics in HCC, and stratification based on CuScore may potentially enhance the prediction of patients' prognosis and facilitate the development of effective and innovative treatment strategies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Algorithms , Cell Death , Cell Line , Tumor Microenvironment/genetics , Apoptosis
4.
J Hepatocell Carcinoma ; 10: 2173-2185, 2023.
Article in English | MEDLINE | ID: mdl-38084209

ABSTRACT

Background: MicroRNA-612 (miR-612) has been proven to suppress the formation of invadopodia and inhibit hepatocellular carcinoma (HCC) metastasis by hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA)-mediated lipid reprogramming. However, its biological roles in HCC cell ferroptosis remain unclear. Methods and Results: In this study, we found that HCC cells with high metastatic potential were more resistant to ferroptosis, indicating that ferroptosis is related to HCC metastasis. The levels of lipid reactive oxygen species (ROS) were found to be much lower in HCC cells with high metastatic potential by flow cytometry (FCM). We used HCC cells with miR-612 overexpression/knockout and HADHA overexpression/knockdown to test cell viability after stimulation with RSL3. HCC cells overexpressing miR-612 were more sensitive to ferroptosis, and miR-612 could increase lipid ROS levels. Furthermore, colony formation assays and Transwell assays showed that miR-612 could inhibit the proliferation and metastasis of HCC cells by promoting ferroptosis. We next confirmed that miR-612 influenced HCC cell ferroptosis by regulating HADHA. HADHA could upregulate the expression of key enzymes in the mevalonate (MVA) pathway. HADHA overexpression upregulated the expression of CoQ10 and decreased polyunsaturated fatty acid (PUFA) levels and lipid peroxide abundance. miR-612 also suppressed HCC cell proliferation and metastasis by enhancing RSL3- and lovastatin-induced ferroptosis in vivo. Conclusion: Overall, miR-612 promotes ferroptosis in HCC cells and affects HCC proliferation and metastasis by downregulating CoQ10 and increasing cellular PUFA levels and lipid peroxides via the HADHA-mediated MVA pathway.

5.
J Org Chem ; 88(18): 13049-13056, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37647210

ABSTRACT

A one-pot metal-free protocol to access indazoles from easily available 2-aminophenones and hydroxylamine derivatives has been achieved. The reaction is operationally simple, mild, and insensitive to air and moisture. A broad range of indazoles were prepared in good to excellent yield (up to 97% yield), and the reaction displayed a broad functional group tolerance. The reaction was performed at gram scale, and its synthetic application was exhibited through the rapid and efficient preparation of bioactive molecule YC-3 and FDA-approved drug axitinib.

6.
Cell Signal ; 104: 110565, 2023 04.
Article in English | MEDLINE | ID: mdl-36539000

ABSTRACT

Metastasis is a landmark event for rapid postsurgical relapse and death of HCC patients. Although distinct genomic and transcriptomic profiling of HCC metastasis had been reported previously, the causal relationships of somatic mutants, mRNA levels and metastatic potentials were difficult to be established in clinic. Therefore, 11 human HCC cell lines and 7 monoclonal derivatives with definite metastatic potentials and tropisms were subjected to whole exome sequencing (WES) and whole transcriptome sequencing (WTS). TP53, MYO5A, ROS1 and ARID2 were the prominent mutants of metastatic drivers in HCC cells. During HCC clonal evaluation, TP53, MYO5A and ROS1 mutations occurred in the early stage, EXT2 and NIN in the late stage. NF1 mutant was unique in lung tropistic cell lines, RNF126 mutant in lymphatic tropistic ones. PER1, LMO2, GAS7, NR4A3 expression levels were positively associated with relapse-free survival (RFS) of HCC patients. The integrative analysis revealed 58 genes exhibited both somatic mutation and dysregulated mRNA levels in high metastatic cells. Altogether, metastatic drivers could accumulate gradually at different stages during HCC progression, some drivers might modulate HCC metastatic potentials and the others regulate metastatic tropisms.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Transcriptome/genetics , Protein-Tyrosine Kinases/metabolism , Mutation/genetics , Proto-Oncogene Proteins/metabolism , Genomics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Biosens Bioelectron ; 220: 114898, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36403494

ABSTRACT

Analysis of cytokines levels in human serum is critical as it can be a "symptom diagnostic biomarker" in COVID-19, giving real-time information about human health status. Here, we present the construction and performance of a low-price immunosensor (∼US$0.428 per test) based on microfluidic paper-based system to detect cytokine for predicting the health status of COVID-19 patients. Interleukin-6 (IL-6) was selected as the detection model for the close relationship between IL-6 and COVID-19. The assay, which we integrated into foldable paper system, leverages the magnetic immunoassay, the streptavidin-horseradish peroxidase (HRP) associated with tetramethyl benzidine/hydrogen peroxide (TMB/H2O2) to amplify the signal for electrochemical readout. To improve the sensitivity of cytokine detection, a hybrid of gold nanoparticles (AuNPs) and polypyrrole (PPy) hydrogel was modified on the working electrode to increase the conductivity and improve the electron transfer rate. With our prototypic origami paper-based immunosensor operated in differential pulse voltammetry (DPV) mode, we achieved excellent results with a dynamic range from 5 to 1000 pg/mL and a lower detection limit (LOD) of 0.654 pg/mL. Furthermore, we evaluated the capability of the clinical application of the proposed immunosensor using human serum samples from a hospital. The results indicate that our proposed immunosensor has great potential in early diagnosing high-risk COVID-19 patients.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Cytokines , Hydrogels , Polymers , Gold , COVID-19/diagnosis , Interleukin-6 , Hydrogen Peroxide , Immunoassay , Pyrroles
8.
Anal Methods ; 14(22): 2161-2167, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35593172

ABSTRACT

Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg2+, taking advantage of the well-established anodic stripping voltammetry (ASV). This hybrid material not only increases the surface area and charge transfer rate but also provides more active sites for Hg deposition due to the formation of homogeneous, high density and monodispersed AuNPs on the ERGO film. The prepared AuNPs/ERGO hybrid was modified on a glassy carbon electrode (GCE) to detect Hg2+ with a linear range from 0.5 to 20 µg L-1 and a low limit of detection (LOD) of 0.06 µg L-1. The selectivity and stability of the as-prepared electrode were investigated and showed promising results. In addition, a screen-printed carbon electrode (SPCE) was also employed to verify the practical application ability of our assay with an excellent performance, which presents a bright application prospect for in situ Hg2+ detection.


Subject(s)
Graphite , Mercury , Metal Nanoparticles , Carbon/chemistry , Electrodes , Gold/chemistry , Graphite/chemistry , Humans , Ions , Mercury/chemistry , Metal Nanoparticles/chemistry
9.
Talanta ; 240: 123173, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34999320

ABSTRACT

Cytokines are important factors in the early diagnosis of autoimmune diseases and require high sensitivity, high selectivity and quantitative detection. We proposed a miniaturized electrochemical magneto-immunosensor (EC-MIS) on portable interleukin-6 (IL-6) detection based on this requirement. Firstly, a micro-fabricated working electrode is electrochemically modified with a hybrid of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). Increased surface area and enhanced charge transfer rate improve the performance of this immunosensor on sensitivity. Secondly, magnetic beads attached with the capture antibody (cAb) are employed in sandwich immunoassay. This kind of immunoassay is immobilized on the working electrode surface by an external magnet to enrich the analyte IL-6. Thirdly, the last two features are combined and integrated on a microfluidic device in order to restrict the sample at certain areas and ease the operation of detection. With our prototypic EC-MIS operated in amperometric mode, we have achieved the detection of IL-6 with a linear range from 0.97 to 250 pg/mL and a limit of detection (LOD) of 0.42 pg/mL. Real serum samples were demonstrated and compared with benchtop equipment's results.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Electrochemical Techniques , Gold , Immunoassay , Interleukin-6 , Limit of Detection , Microfluidics
10.
Clin Transl Med ; 11(3): e352, 2021 03.
Article in English | MEDLINE | ID: mdl-33783988

ABSTRACT

BACKGROUND: S-adenosylmethionine decarboxylase proenzyme (AMD1) is a key enzyme involved in the synthesis of spermine (SPM) and spermidine (SPD), which are associated with multifarious cellular processes. It is also found to be an oncogene in multiple cancers and a potential target for tumor therapy. Nevertheless, the role AMD1 plays in hepatocellular carcinoma (HCC) is still unknown. METHODS: HCC samples were applied to detect AMD1 expression and evaluate its associations with clinicopathological features and prognosis. Subcutaneous and orthotopic tumor mouse models were constructed to analyze the proliferation and metastasis of HCC cells after AMD1 knockdown or overexpression. Drug sensitive and tumor sphere assay were performed to investigate the effect of AMD1 on HCC cells stemness. Real-time quantitative PCR (qRT-PCR), western blot, immunohistochemical (IHC) and m6A-RNA immunoprecipitation (Me-RIP) sequencing/qPCR were applied to explore the potential mechanisms of AMD1 in HCC. Furthermore, immunofluorescence, co-IP (Co-IP) assays, and mass spectrometric (MS) analyses were performed to verify the proteins interacting with AMD1. RESULTS: AMD1 was enriched in human HCC tissues and suggested a poor prognosis. High AMD1 level could promote SRY-box transcription factor 2 (SOX2), Kruppel like factor 4 (KLF4), and NANOG expression of HCC cells through obesity-associated protein (FTO)-mediated mRNA demethylation. Mechanistically, high AMD1 expression increased the levels of SPD in HCC cells, which could modify the scaffold protein, Ras GTPase-activating-like protein 1 (IQGAP1) and enhance the interaction between IQGAP1 and FTO. This interaction could enhance the phosphorylation and decrease the ubiquitination of FTO. CONCLUSIONS: AMD1 could stabilize the interaction of IQGAP1 with FTO, which then promotes FTO expression and increases HCC stemness. AMD1 shows prospects as a prognostic predictor and a therapeutic target for HCC.


Subject(s)
Adenosylmethionine Decarboxylase/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Carcinoma, Hepatocellular/genetics , Demethylation , Liver Neoplasms/genetics , RNA, Messenger/metabolism , Adenosylmethionine Decarboxylase/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/genetics , Disease Models, Animal , Humans , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , RNA, Messenger/genetics , Stem Cells/metabolism , Up-Regulation/genetics
11.
Open Med (Wars) ; 15(1): 317-326, 2020.
Article in English | MEDLINE | ID: mdl-33335992

ABSTRACT

PURPOSE: S100A6 protein (calcyclin), a small calcium-binding protein of the S100 family, is often upregulated in various types of cancers, including hepatocellular carcinoma (HCC). The aim of this study was to illustrate the molecular mechanism of S100A6 in regulating the proliferation and migration of HCC cells. METHODS: The expressions of S100A6 in human HCC and adjacent non-tumor liver specimens were detected using immunoblotting and quantitative PCR (qPCR). The recombinant glutathione S-transferase (GST)-tagged human S100A6 protein was purified and identified. After treatment with S100A6, the proliferation of HepG2 cells was detected by the MTT and colony formation assay, and the migration of HepG2 cells was investigated by the transwell migration assay; the protein levels of cyclin D1 (CCND1), E-cadherin, and vimentin were also tested by immunoblotting. The effect of S100A6 on p21 and nuclear factor-κB pathway was verified by performing the dual luciferase assay. Then, the expression of p21 and its transcription activator, p53, was examined using immunoblotting and qPCR, the ubiquitination of which was investigated through co-immunoprecipitation. RESULTS: It was found that the level of S100A6 was higher in the HCC tissues than in the adjacent non-tumor liver specimens. Exogenous overexpression of S100A6 promoted the proliferation and migration of HepG2 cells. S100A6 was observed to regulate p21 mRNA and protein expression levels and decrease p53 protein expression level, not mRNA level, by promoting the ubiquitination of p53 via the proteasome-dependent degradation pathway. CONCLUSION: Our study indicated that S100A6 overexpression could promote the proliferation and migration of HCC cells by enhancing p53 ubiquitin-dependent proteasome degradation, ultimately regulating the p21 expression level.

12.
Cell Signal ; 72: 109650, 2020 08.
Article in English | MEDLINE | ID: mdl-32320856

ABSTRACT

Epithelial-mesenchymal transition (EMT), a pivotal event during cancer progression such as relapse and metastasis, is positively correlated with the stemness potency of tumor cells. Our previous study showed that miR-296-5p attenuated EMT program of hepatocellular carcinoma cells (HCC) through NRG1/ERBB2/ERBB3 signaling. In the present study, we uncovered that miR-296-5p was able to inhibit the stemness potency of HCC by decreasing the number and size of tumorspheres, downregulating the expression of CSC biomarkers and hampering the ability of tumorigenesis in NOD/SCID mice. Brahma-related gene-1 (Brg1), as the target protein of miR-296-5p detected by bioinformatics methods, activates a series of downstream cascades through directly binding to Sall4 promoter and enhancing Sall4 transcription. Importantly, the higher expressions of Brg1 and Sall4 in tumor tissues of HCC patients suggest poorer prognoses after surgical extraction. In conclusion, miR-296-5p exerts an inhibitory effect on stemness potency of HCC cells via Brg1/Sall4 axis.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , DNA Helicases/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Cell Line, Tumor , Down-Regulation/genetics , Epithelial Cell Adhesion Molecule/metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Thy-1 Antigens/metabolism
13.
J Cancer ; 10(20): 4777-4792, 2019.
Article in English | MEDLINE | ID: mdl-31598149

ABSTRACT

Background: Fucoidan is a fucose-enriched, sulfated polysaccharide found in brown algae; in recent years, this polysaccharide has been found to exert several biological effects, including antitumor effects, such as antiproliferation, activating apoptosis, and anti-angiogenesis of cancer cells. However, the antimetastatic effect of fucoidan and the related targeting receptors remain unknown. In the present study, we examined the inhibition of invadopodia formation and underlying mechanism of fucoidan on human liver cancer cells. Methods: We used 98% purified fucoidan from Sargassum species to treat the hepatocellular carcinoma (HCC) cells SMMC-7721, Huh7 and HCCLM3 in vitro and the HCCLM3 cell line in vivo. The HCC cells were cultured with various concentrations of Fucoidan-Sargassum (0-30 mg/mL). Migration, invasion and wound healing assays were performed to determine the antimetastatic effect of fucoidan on the HCC cells. Western blot analysis and immunofluorescence staining were conducted to determine the expression levels of invadopodia formation-regulating proteins and the targeting membrane receptor proteins. Results: Fucoidan-Sargassum inhibited the migration and invasion of HCC SMMC-7721, Huh7 and HCCLM3 cells in a dose-dependent manner. In the HCCLM3 cells, Fucoidan-Sargassum also decreased the expression levels of invadopodia-related proteins including Src, Cortactin, N-WASP, ARP3, CDC42, MMP2, MT1-MMP, and the targeting receptors integrin αV and ß3 in a dose-dependent manner. Fucoidan-Sargassum also increased the levels of endoplasmic reticulum-related proteins, including GRP78, IRE1, SPARC, and the type IV collagen receptor proteins integrin α1 and ß1. In vivo, Fucoidan-Sargassum reduced the size of liver tumors and decreased the number of lung metastatic foci in nude mice with hepatocellular carcinoma xenografts. Conclusion: These findings indicate that Fucoidan-Sargassum has an antimetastatic effect on SMMC-7721, Huh7 and HCCLM3 liver cancer cells, and the underlying mechanism involves targeting ITGαVß3 and mediating the ITGαVß3/SRC/E2F1 signaling pathway. These results suggest that Fucoidan-Sargassum may be a promising therapeutic antimetastatic compound in the development of a metastasis-preventive drug for treating liver cancer.

14.
ACS Appl Mater Interfaces ; 11(5): 4820-4825, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30620168

ABSTRACT

Herein, we report a novel Fe foil-guided, in situ etching strategy for the preparation of highly uniform Ag@AgX (X = Cl, Br) nanowires (NWs) and applied the photoelectric-responsive materials for sensitive photoelectrochemical (PEC) detection of leukemia DNA. The Ag@AgX NW formation process was discussed from the redox potential and Ksp value. The fabricated PEC platform for sensing leukemia DNA showed good assay performance with a wide linear range (0.1 pM to 50 nM) and low detection limit of 0.033 pM. We envision that our Fe foil-guided synthetic method could be applied to synthesize more photoactive materials for sensitive PEC detections.


Subject(s)
DNA/genetics , Genetic Techniques/instrumentation , Leukemia/genetics , Nanowires/chemistry , Silver/chemistry , DNA/analysis , Equipment Design , Humans , Iron/chemistry , Limit of Detection , Photochemical Processes
15.
J Exp Clin Cancer Res ; 37(1): 294, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30486894

ABSTRACT

BACKGROUND: Accumulation of evidence indicates that miRNAs have crucial roles in the regulation of EMT-associated properties, such as proliferation, migration and invasion. However, the underlying molecular mechanisms are not entirely illustrated. Here, we investigated the role of miR-296-5p in hepatocellular carcinoma (HCC) progression. METHODS: In vitro cell morphology, proliferation, migration and invasion were compared between HCC cell lines with up- or down-regulation of miR-296-5p. Immunofluorescence and Western blot immunofluorescence assays were used to detect the expression of EMT markers. Bioinformatics programs, luciferase reporter assay and rescue experiments were used to validate the downstream targets of miR-296-5p. Xenograft nude mouse models were established to observe tumor growth and metastasis. Immunohistochemical assays were conducted to study the relationships between miR-296-5p expression and Neuregulin-1 (NRG1)/EMT markers in human HCC samples and mice. RESULTS: miR-296-5p was prominently downregulated in HCC tissues relative to adjacent normal liver tissues and associated with favorable prognosis. Overexpression of miR-296-5p inhibited EMT along with migration and invasion of HCC cells via suppressing NRG1/ERBB2/ERBB3/RAS/MAPK/Fra-2 signaling in vitro. More importantly, miR-296-5p disrupted intrahepatic and pulmonary metastasis in vivo. NRG1, as a direct target of miR-296-5p, mediates downstream biological responses. In HCC tissues from patients and mice, the levels of miR-296-5p and NRG1 also showed an inverse relationship. CONCLUSIONS: miR-296-5p inhibited EMT-related metastasis of HCC through NRG1/ERBB2/ERBB3/RAS/MAPK/Fra-2 signaling.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Neuregulin-1/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics , Signal Transduction , Transfection
16.
ACS Sens ; 3(7): 1368-1375, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29943575

ABSTRACT

Despite some recent developments on the portable on-site sensor of Aflatoxin B1 (AFB1), the complex and expensive preparation of recognition elements have still limited their wide applications. In this paper, using the fast, low-cost, and stable recognition of aptamer DNA-AFB1, a portable aptasensor was constructed for the on-site detection of AFB1 in food matrixes, with the readout of personal glucose meter (PGM) and DNA walking machine for signal probe separation. In such an assay protocol, the target could trigger the DNA walker to autonomously move on the electrode surface, propelled by unidirectional Pb2+-specific DNAzyme digestion, which could amplify the signal and separate the signal probe as well for further quantification by the PGM. Under optimized conditions, the increase of PGM signal was relative with the concentration of AFB1 ranging from 0.02 to 10 nM and the low limit of detection (LOD) was 10 pM (S/N = 3). With the features of portability, and cheapness, the presented user-friendly method could be extended to various other analytes for wide point-of-care applications.


Subject(s)
Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , Blood Glucose Self-Monitoring/instrumentation , Bread/analysis , Food Contamination/analysis , DNA, Catalytic/chemistry , Lead/chemistry , Limit of Detection , Nucleic Acid Hybridization
17.
Talanta ; 185: 106-112, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29759175

ABSTRACT

This paper reported a novel colorimetric assay strategy for avidin and biotin interactions based on terminal protection of the biotinylated single-stranded DNA and the surface plasmon resonance adsorption of gold nanoparticles (AuNPs). In this assay, it was firstly found that biotin-ssDNA specifically bound to the target protein avidin with strong affinity could be protected from hydrolysis by exonuclease I (Exo I). Furthermore, a colorimetric strategy was designed for the detection of avidin and biotin interactions. In the process, in the presence of avidin, the interaction of avidin and biotin protected the digestion of Exo I towards the biotin-ssDNA. The biotin-ssDNA with negatively charged would attach to the surface of AuNPs with positively charge in high salt solution through electrostatic interactions, which prevented AuNPs to aggregate. With the increased addition of avidin, the absorbance of AuNPs in 520 nm increased gradually and the color showed gradually wine red. By taking advantage of terminal protection, the developed strategy could offer high sensitivity for detecting small molecule-protein interactions. The results revealed that the developed strategy was highly sensitive for detecting avidin in the concentration ranging from 0.01 to 0.2 µg/mL with the detection limit of 4 × 10-3 µg/mL.The developed assay also showed highly specific, cost-efficient and convenient. Moreover, this strategy only required labeling the small molecule on a single-stranded DNA, circumventing protein modifications that might be harmful for activity. In view of these advantages, this new colorimetric method could have potential to become a universal, sensitive, and selective platform for detection of small molecule-protein interactions.


Subject(s)
Avidin/analysis , Biotin/analysis , Colorimetry , Gold/chemistry , Metal Nanoparticles/chemistry
18.
Onco Targets Ther ; 11: 571-585, 2018.
Article in English | MEDLINE | ID: mdl-29416358

ABSTRACT

BACKGROUND: The miRNA miR-106b-5p has been previously reported to be increased in hepatocellular carcinoma (HCC) tissues compared to cirrhotic tissues. The purpose of this study was to detect its expression in HCC cell lines with distinct metastatic potentials and to explore the molecular mechanisms underlying HCC stemness and migration. METHODS: miR-106b-5p expression was studied in HCC tissues and cell lines. In vitro cancer stem cell (CSC)-like properties, cell migration and invasion were compared between HCC cell lines with upregulation or downregulation of miR-106b-5p. In vivo tail vein injection models were established to evaluate the role of miR-106b-5p in lung metastasis. Bioinformatics programs, luciferase reporter assay and rescue experiments were used to validate the downstream targets of miR-106b-5p. The relationship between the expression of the targeted gene and clinicopathological parameters was also analyzed. RESULTS: miR-106b-5p expression was higher in HCC tissues and cell lines than that in non-tumor tissues and hepatocyte Chang liver, respectively. Upregulation of miR-106b-5p exhibited a promoting role in CSC properties, cell migration and activation of phosphatidylinositol-3 kinase (PI3K)/Akt signaling in vitro, as well as in lung metastasis in vivo. However, downregulation of miR-106b-5p exhibited the opposite effect. Furthermore, PTEN was verified as a direct target of miR-106b-5p. Upon clinicopathological analysis, lower level of PTEN was significantly associated with more aggressive characteristics. Patients with high PTEN expression had longer overall survival and disease-free survival. CONCLUSION: miR-106b-5p promotes HCC stemness maintenance and metastasis by targeting PTEN via PI3K/Akt pathway. Inhibition of miR-106b-5p might be effective therapeutic strategies to treat advanced HCC.

19.
Biosens Bioelectron ; 95: 152-159, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28445812

ABSTRACT

Sensitive and rapid detection of platelet-derived growth factor BB (PDGF-BB), a cancer-related protein, could help early diagnosis, treatment, and prognosis of cancers. Although some methods have been developed to detect PDGF-BB, few can provide quantitative results using an affordable and portable device that is suitable for home use or field application. In this work, we report the first use of a portable kind of personal glucose meter (PGM) combining a catalytic and molecular beacon (CAMB) system with a cation exchange reaction (CX reaction) for ultrasensitive PDGF-BB assay. It realized the amplification of the detection in three ways, including greater aptamer payload on nanoparticles, CX reaction releasing thousands of Zn2+ and the cycle by the catalyzing cleavage of 8-17 DNAzyme. In the process, with the addition of PDGF-BB into the aptasensor, the specific recognition between aptamer and protein was initiated resulting in the combination of ZnS NNC for further CX reaction to release thousands of Zn2+, which could cleave the substrate DNA in the CAMB system realizing multiple cycle. The cleaved DNA fragment was designed with invertase-labeled could convert sucrose into glucose which could be detected and quantified by PGM accompanying with the change of color of the control window from yellow to green. The enhanced signal of the PGM has a relationship with the concentration of PDGF-BB in the range of 3.16×10-16M to 3.16×10-12M, and the detection limit is 0.11fM. Moreover, the catalytic and cleavage activities of 8-17 DNAzyme can be achieved in solution; thus, no enzyme immobilization is needed for detection. The triply amplified strategy showed high selectivity, stability, and applicability for detecting the desired protein.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Glucose/isolation & purification , Proto-Oncogene Proteins c-sis/isolation & purification , Becaplermin , DNA, Catalytic/chemistry , Glucose/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Proto-Oncogene Proteins c-sis/chemistry
20.
Cell Death Dis ; 7(9): e2377, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27685621

ABSTRACT

In our previous study we found that miR-612 negatively regulated stem cell-like property and tumor metastasis of hepatocellular carcinoma cells (HCC). In this study, we try to elucidate underlying mechanism of the regulation, and find that miR-612 inversely modulate the mRNA and protein level of epithelial cell adhesion molecule as well as CD133, negatively regulate the numbers and sizes of tumor spheres, directly inhibit the protein level of Sp1, and subsequently reduce transcription activity of Nanog. Of importance, the higher levels of Sp1 and Nanog in biopsies are the more unfavorable prognoses of HCC patients are found after tumor resection. Taken together, miR-612 has a suppressive role on HCC stemness via Sp1/Nanog signaling pathway.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/metabolism , Nanog Homeobox Protein/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction/genetics , Sp1 Transcription Factor/metabolism , AC133 Antigen/metabolism , Base Sequence , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Chromatin Immunoprecipitation , Epithelial Cell Adhesion Molecule/metabolism , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , Nanog Homeobox Protein/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...