Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732405

ABSTRACT

Iris laevigata Fisch. is an excellent ornamental plant in cold regions due to its unique ornamental ability and strong cold resistance. However, the flowering period of the population is only about 20 days, greatly limiting its potential uses in landscaping and the cutting flower industry. In addition, I. laevigata is often challenged with various abiotic stresses including high salinity and drought in its native habitats. Thus, breeding novel cultivars with delayed flowering time and higher resistance to abiotic stress is of high importance. In this study, we utilized sequencing data from the I. laevigata transcriptome to identify WRKYs and characterized IlWRKY22, a key transcription factor that modulates flowering time and abiotic stress responses. IlWRKY22 is induced by salt and drought stress. We cloned IlWRKY22 and found that it is a Group IIe WRKY localized in the nucleus. Overexpressing IlWRKY22 in Arabidopsis thaliana (L.) Heynh. and Nicotiana tabacum L. resulted in a delayed flowering time in the transgenic plants. We created transgenic N. tabacum overexpressing IlWRKY22, which showed significantly improved resistance to both salt and drought compared to the control plants. Thus, our study revealed a unique dual function of IlWRKY22, an excellent candidate gene for breeding novel Iris cultivars of desirable traits.

2.
Plant Physiol Biochem ; 207: 108438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38367387

ABSTRACT

Rhododendron dauricum L. is a semi-evergreen shrub of high ornamental and medicinal values in Northeast China. To study the molecular mechanisms of corolla coloration in R. dauricum, integrated metabolomics and transcriptomics were performed in R. dauricum featuring purple flowers and R. dauricum var. album featuring white flowers. Comparative metabolomics revealed 25 differential metabolites in the corolla of the two distinct colors, enriched in flavonoids that are closely related to pigmentation in the flower. Differential analysis of the transcriptomics data revealed enrichment of structural genes for flavonoid biosynthesis (99 up- and 58 down-regulated, respectively, in purple corollas compared to white ones). Significantly, CHS and CHI, key genes in the early stage of anthocyanin synthesis, as well as F3H, F3'H, F3'5'H, DFR, ANS, and UFGT that promote the accumulation of pigments in the late stage of anthocyanin synthesis, were up-regulated in R. dauricum (purple color). In R. dauricum var. album, FLS were key genes determining the accumulation of flavonols. In addition, transcriptome-metabolome correlation analysis identified 16 R2R3 MYB transcription factors (out of 83 MYBs) that are important for corolla coloration. Five negative and four positive MYBs were further identified by integrated transcriptional and metabolic network analysis, revealing a key role of MYBA and MYB12 in regulating anthocyanins and flavonols, respectively. Moreover, we validated the function of RdMYBA by creating stable transgenic plants and found that RdMYBA promotes anthocyanin biosynthesis. In summary, we systematically characterized the transcriptome and metabolome of two R. dauricum cultivars with different flower colors and identified MYBs as key factors in modulating corolla coloration.


Subject(s)
Anthocyanins , Rhododendron , Anthocyanins/metabolism , Rhododendron/genetics , Gene Expression Profiling , Transcription Factors/genetics , Pigmentation/genetics , Transcriptome/genetics , Flowers/genetics , Flowers/metabolism , Flavonols/metabolism , Gene Expression Regulation, Plant
4.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003365

ABSTRACT

Drought and high salinity greatly affect plant growth and development. WRKY transcription factors play a key role in plant tolerance to abiotic stress, but the functions of WRKYs in the ornamental monocotyledon Iris laevigata remain largely unexplored. In this study, we cloned IlWRKY70 and found that it is a Group III WRKY localized in the nucleus. The expression of IlWRKY70 was induced by NaCl and PEG-6000, which reached peaks (4.38 and 5.65 times) after 3 h and 1 h, respectively. The exogenous overexpression of IlWRKY70 in N. tabacum significantly improved the resistance under NaCl and drought treatments, as evidenced by higher germination rates, longer root lengths, and increased fresh weights compared to those of control plants. In addition, transgenic seedlings showed significantly reduced wilting, higher photosynthetic performance, higher Fv/Fm and chlorophyll content, and lower stomatal conductance. Moreover, transgenic lines showed higher antioxidant enzymatic activities, lower reactive oxygen species (ROS), and lower malondialdehyde contents. Accordingly, we also found higher expressions of antioxidant defense genes, including SOD, CAT, and POD, in transgenic lines compared to controls under salt and drought stresses. Thus, IlWRKY70 enhances the abilities of salt and drought tolerances in plants, at least partially, via ROS regulation and can be used for breeding I. laevigata possessing enhanced salt and drought resistances.


Subject(s)
Iris Plant , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Nicotiana/metabolism , Iris Plant/genetics , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Sodium Chloride/pharmacology , Droughts , Salt Tolerance/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Stress, Physiological/genetics
5.
Biology (Basel) ; 11(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36552231

ABSTRACT

Pigments in cyclamen (Cyclamen purpurascens) endows flowers with great ornamental and medicinal values. However, little is known about the biosynthetic pathways of pigments, especially anthocyanins, in cyclamen flowers. Herein, anthocyanins profiling and RNA-Seq were used to decipher the molecular events using cyclamen genotypes of red (HXK) or white (BXK) flowers. We found that red cyclamen petals are rich in cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-O-glucoside, and ruti. In addition, our transcriptomics data revealed 3589 up-regulated genes and 2788 down-regulated genes comparing the BXK to HXK. Our rich dataset also identified eight putative key genes for anthocyanin synthesis, including four chalcone synthase (CHS, g13809_i0, g12097_i0, g18851_i0, g36714_i0), one chalcone isomerase (CHI, g26337_i0), two flavonoid 3-hydroxylase (F3'H, g14710_i0 and g15005_i0), and one anthocyanidin synthase (ANS, g18981_i0). Importantly, we found a 2.5 order of magnitude higher expression of anthocyanin 3-O-glucosyltransferase (g8206_i0), which encodes a key gene in glycosylation of anthocyanins, in HXK compared to BXK. Taken together, our multiomics approach demonstrated massive changes in gene regulatory networks and anthocyanin metabolism in controlling cyclamen flower color.

6.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555329

ABSTRACT

Phenylalanine ammonia-lyase (PAL, E.C.4.3.1.5) catalyzes the benzene propane metabolism and is the most extensively studied enzyme of the phenylpropanoid pathway. However, the role of PAL genes in Astragalus membranaceus, a non-model plant showing high capability toward abiotic stress, is less studied. Here, we cloned AmPAL and found that it encodes a protein that resides in the cytoplasmic membrane. The mRNA of AmPAL was strongly induced by NaCl or NaHCO3 treatment, especially in the root. Overexpressing AmPAL in Nicotiana tabacum resulted in higher PAL enzyme activities, lower levels of malondialdehyde (MDA), and better root elongation in the seedlings under stress treatment compared to the control plants. The protective role of AmPAL under saline-alkali stress was also observed in 30-day soil-grown plants, which showed higher levels of superoxide dismutase (SOD), proline, and chlorophyll compared to wild-type N. Tabacum. Collectively, we provide evidence that AmPAL is responsive to multiple abiotic stresses and that manipulating the expression of AmPAL can be used to increase the tolerance to adverse environmental factors in plants.


Subject(s)
Astragalus propinquus , Phenylalanine Ammonia-Lyase , Astragalus propinquus/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Sodium Chloride , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
7.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077350

ABSTRACT

Iris laevigata is ideal for gardening and landscaping in northeast China because of its beautiful flowers and strong cold resistance. However, the short length of flowering time (2 days for individual flowers) greatly limits its applications. Molecular breeding and engineering hold high potential for producing I. laevigata of desirable flowering properties. A prerequisite is to identify and characterize key flowering control genes, the identity of which remains largely unknown in I. laevigata due to the lack of genome information. To fill this knowledge gap, we used sequencing data of the I. laevigata transcriptome to identify MADS-box gene-encoding transcription factors that have been shown to play key roles in developmental processes, including flowering. Our data revealed 41 putative MADS-box genes, which consisted of 8 type I (5 Mα and 3 Mß, respectively) and 33 type II members (2 MIKC* and 31 MIKCC, respectively). We then selected IlSEP3 and IlSVP for functional studies and found that both are localized to the nucleus and that they interact physically in vitro. Ectopic expression of IlSEP3 in Arabidopsis resulted in early flowering (32 days) compared to that of control plants (36 days), which could be mediated by modulating the expression of FT, SOC1, AP1, SVP, SPL3, VRN1, and GA20OX. By contrast, plants overexpressing IlSVP were phenotypically similar to that of wild type. Our functional validation of IlSEP3 was consistent with the notion that SEP3 promotes flowering in multiple plant species and indicated that IlSEP3 regulates flowering in I. laevigata. Taken together, this work provided a systematic identification of MADS-box genes in I. laevigata and demonstrated that the flowering time of I. laevigata can be genetically controlled by altering the expression of key MADS-box genes.


Subject(s)
Arabidopsis , Iris Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Iris Plant/genetics , Iris Plant/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...