Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475513

ABSTRACT

The recognition of pathogen effectors through the nucleotide-binding leucine-rich repeat receptor (NLR) family is an important component of plant immunity. In addition to typical domains such as TIR, CC, NBS, and LRR, NLR proteins also contain some atypical integrated domains (IDs), the roles of which are rarely investigated. Here, we carefully screened the soybean (Glycine max) genome and identified the IDs that appeared in the soybean TNL-like proteins. Our results show that multiple IDs (36) are widely present in soybean TNL-like proteins. A total of 27 Gm-TNL-ID genes (soybean TNL-like gene encoding ID) were cloned and their antiviral activity towards the soybean mosaic virus (SMV)/tobacco mosaic virus (TMV) was verified. Two resistance (R) genes, SRA2 (SMV resistance gene contains AAA_22 domain) and SRZ4 (SMV resistance gene contains zf-RVT domain), were identified to possess broad-spectrum resistance characteristics towards six viruses including SMV, TMV, plum pox virus (PPV), cabbage leaf curl virus (CaLCuV), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV). The effects of Gm-TNL-IDX (the domain of the Gm-TNL-ID gene after the TN domain) on the antiviral activity of a R protein SRC7TN (we previously reported the TN domain of the soybean broad-spectrum resistance gene SRC7) were validated, and most of Gm-TNL-IDX inhibits antiviral activity mediated by SRC7TN, possibly through intramolecular interactions. Yeast-two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that seven Gm-TNL-IDX interacted with SMV-component proteins. Truncation analysis on a broad-spectrum antiviral protein SRZ4 indicated that SRZ4TIR is sufficient to mediate antiviral activity against SMV. Soybean cDNA library screening on SRZ4 identified 48 interacting proteins. In summary, our results indicate that the integration of IDs in soybean is widespread and frequent. The NLR-ID toolkit we provide is expected to be valuable for elucidating the functions of atypical NLR proteins in the plant immune system and lay the foundation for the development of engineering NLR for plant-disease control in the future.

2.
Front Microbiol ; 14: 1235708, 2023.
Article in English | MEDLINE | ID: mdl-37779714

ABSTRACT

Drought is the most prevalent environmental stress in crop production, posing a significant danger to food security. Microorganisms in the crop root zone affect crop growth and development, enhance effective nutrient use, and resist adversity hazards. To analyze the changes and functional differences of root space microbial (endosphere-rhizosphere-bulk soil) communities in spring wheat under drought stress. In this study, the root, rhizosphere, and bulk soil of the drought-tolerant group (DTG, three varieties) and drought-sensitive group (DSG, three varieties) were collected. The control (CK, 25-28%), moderate drought (MD, 15-18%), and severe drought (SD, 9-12%) were analyzed by high-throughput sequencing and bioinformatics. The results showed significant differences in the diversity of Bacteria and Fungi in the root space of spring wheat under drought stress (P < 0.05), with the drought-tolerant group exhibiting higher microbial diversity. The microbial community change in spring wheat root space was mainly determined by the niche differentiation of endosphere, rhizosphere, and bulk soil and declined from endosphere to bulk soil due to drought. The antagonism between microbial and root-space species increased, and the community's complexity and stability deteriorated. Enriching drought-resistant preference groups like Actinobaciota, Variovorax, Streptomyces, and Conocybe altered the structure and function of the microbial community in the root space of spring wheat. Spring wheat's root space Bacteria and Fungi have different strategies to respond to drought.

3.
Plants (Basel) ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896113

ABSTRACT

Drought is the most important natural disaster affecting crop growth and development. Crop rhizosphere microorganisms can affect crop growth and development, enhance the effective utilization of nutrients, and resist adversity and hazards. In this paper, six spring wheat varieties were used as research material in the dry farming area of the western foot of the Greater Khingan Mountains, and two kinds of water control treatments were carried out: dry shed rain prevention (DT) and regulated water replenishment (CK). Phenotypic traits, including physiological and biochemical indices, drought resistance gene expression, soil enzyme activity, soil nutrient content, and the responses of potential functional bacteria and fungi under drought stress, were systematically analyzed. The results showed that compared with the control (CK), the leaf wilting, drooping, and yellowing of six spring wheat varieties were enhanced under drought (DT) treatment. The plant height, fresh weight (FW), dry weight (DW), net photosynthetic rate (Pn) and stomatal conductance (Gs), soil total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), organic carbon (SOC), and soil alkaline phosphatase (S-ALP) contents were significantly decreased, among which, FW, Gs and MBC decreased by more than 7.84%, 17.43% and 11.31%, respectively. By contrast, the soil total phosphorus (TP), total potassium (TK), and soil catalase (S-CAT) contents were significantly increased (p < 0.05). TaWdreb2 and TaBADHb genes were highly expressed in T.D40, T.L36, and T.L33 and were expressed at low levels in T.N2, T.B12, and T.F5. Among them, the relative expression of the TaWdreb2 gene in T.L36 was significantly increased by 2.683 times compared with CK. Soil TN and TP are the most sensitive to drought stress and can be used as the characteristic values of drought stress. Based on this, a drought-tolerant variety (T.L36) and a drought-sensitive variety (T.B12) were selected to further analyze the changes in rhizosphere microorganisms. Drought treatment and cultivar differences significantly affected the composition of the rhizosphere microbial community. Drought caused a decrease in the complexity of the rhizosphere microbial network, and the structure of bacteria was more complex than that of fungi. The Shannon index and network modular number of bacteria in these varieties (T.L36) increased, with rich small-world network properties. Actinobacteria, Chloroflexi, Firmicutes, Basidiomycota, and Ascomycota were the dominant bacteria under drought treatment. The beneficial bacteria Bacillus, Penicillium, and Blastococcus were enriched in the rhizosphere of T.L36. Brevibacillus and Glycomyce were enriched in the rhizosphere of T.B12. In general, drought can inhibit the growth and development of spring wheat, and spring wheat can resist drought hazards by regulating the expression of drought-related genes, regulating physiological metabolites, and enriching beneficial microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...