Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 911: 148338, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38438056

ABSTRACT

DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on X chromosome gene 1), a key sex determinant in various species, plays a vital role in gonad differentiation and development and controls spermatogenesis. However, the identity and function of DAX1 are still unclear in bivalves. In the present study, we identified a DAX1 (designed as Tc-DAX1) gene from the boring giant clam Tridacna crocea, a tropical marine bivalve. The full length of Tc-DAX1 was 1877 bp, encoding 462 amino acids, with a Molecular weight of 51.81 kDa and a theoretical Isoelectric point of 5.87 (pI). Multiple sequence alignments and phylogenetic analysis indicated a putative ligand binding domain (LBD) conserved regions clustered with molluscans DAX1 homologs. The tissue distributions in different reproductive stages revealed a dimorphic pattern, with the highest expression trend in the male reproductive stage, indicating its role in spermatogenesis. The DAX1 expression data from embryonic stages shows its highest expression profile (P < 0.05) in the zygote stage, followed by decreasing trends in the larvae stages (P > 0.05). The localization of DAX1 transcripts has also been confirmed by whole mount in situ hybridization, showing high positive signals in the fertilized egg, 2, and 4-cell stage, and gastrula. Moreover, RNAi knockdown of the Tc-DAX1 transcripts shows a significantly lower expression profile in the ds-DAX1 group compared to the ds-EGFP group. Subsequent histological analysis of gonads revealed that spermatogenesis was affected in a ds-DAX1 group compared to the ds-EGFP group. All these results indicate that Tc-DAX1 is involved in the spermatogenesis and early embryonic development of T. crocea, providing valuable information for the breeding and aquaculture of giant clams.


Subject(s)
Bivalvia , Gonads , Male , Animals , Phylogeny , Gonads/metabolism , Spermatogenesis/genetics , Sequence Alignment , Bivalvia/genetics , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism
2.
Food Chem ; 398: 133868, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35961171

ABSTRACT

Gametogenesis can significantly affect the biochemical composition of oysters, but little research on the difference between sexes. Therefore, we conducted the first in-depth study on the composition differences between males and females of three different Crassostrea sp.. The results showed that females had higher glycogen, lipid, Cu and Zn contents than males, while males had higher protein and taurine contents than females at maturity, which might be related to special meiosis pattern of eggs and less energy was required for female gametogenesis. In addition, both males and females had well-balanced essential amino acid compositions. The omega-3: omega-6 (n-3: n-6) ratio of males was significantly higher than that of females, indicating that the nutritional quality of males was higher. These results provide a reliable and refined theoretical and research basis for revealing the nutritional quality, extracting beneficial ingredients, and developing functional food of Crassostrea sp., and provide data support for the sex-regulated breeding of oysters.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Crassostrea/genetics , Crassostrea/metabolism , Female , Glycogen/metabolism , Male , Metals/metabolism , Nutritive Value , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...