Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 751, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902322

ABSTRACT

Ferroptosis is a recently discovered form of cell death that plays an important role in tumor growth and holds promise as a target for antitumor therapy. However, evidence in the regulation of ferroptosis in lung adenocarcinoma (LUAD) remains elusive. Here, we show that retinoic acid receptor alpha (RARA) is upregulated with the treatment of ferroptosis inducers (FINs). Pharmacological activation of RARA increases the resistance of LUAD to ferroptosis according to cell viability and lipid peroxidation assays, while RARA inhibitor or knockdown (KD) does the opposite. Through transcriptome sequencing in RARA-KD cells and chromatin immunoprecipitation (CHIP)-Seq data, we identify thioredoxin (TXN) and protein phosphatase 1 F (PPM1F) as downstream targets of RARA, both of which inhibit ferroptosis. We confirm that RARA binds to the promotor region of TXN and PPM1F and promotes their transcription by CHIP-qPCR and dual-luciferase assays. Overexpression of TXN and PPM1F reverses the effects of RARA knockdown on ferroptosis in vitro and vivo. Clinically, RARA knockdown or inhibitor increases cells' sensitivity to pemetrexed and cisplatin (CDDP). Immunohistochemistry (IHC) of LUAD from our cohort shows the same expression tendency of RARA and the downstream targets. Our study uncovers that RARA inhibits ferroptosis in LUAD by promoting TXN and PPM1F, and inhibiting RARA-TXN/PPM1F axis represents a promising strategy for improving the efficacy of FINs or chemotherapy in the treatment of LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Thioredoxins , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Thioredoxins/metabolism , Thioredoxins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Female , Male
2.
Aquat Toxicol ; 267: 106833, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215608

ABSTRACT

The production and usage of organophosphate flame retardants (OPFRs) in textiles, plastics, and electronics have surged, with phosphorus-based flame retardants constituting over 30 % of the global consumption of flame retardants. Meanwhile, concerns regarding the potential hazards of OPFRs to ecosystems and human health including disruptions in the endocrine system, inhibition of reproduction, and manifestation of developmental defects have intensified. However, our comprehensive data analysis has unveiled a pronounced and critical knowledge gap, as at present, a majority of studies emphasize the attributes of traditional OPFRs, such as triphenyl phosphate (TPHP), while emerging OPFRs (eOPFRs) remain undeservedly overlooked. We elaborated on the current advancements and challenges regarding eOPFRs research and demonstrated that eOPFRs exhibit considerable diversity in terms of their chemical structures, substantial residue levels, broad sources of occurrence, and limited understanding of their potent (eco)toxicological implications. In light of these attributes, it becomes evident that the environmental and health risks of eOPFRs can be comparable to, if not surpass, those attributed to traditional OPFRs. This compelling observation underscores an imperative need for heightened research focus and extensive research efforts dedicated to the study of eOPFRs, rather than still focusing on the realm of their traditional counterparts. Despite the challenges ahead, the emphasized environmental surveillance and toxicological assessment are imperative to prevent the potential evolution of these compounds into a significant ecological and human health threat.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , Humans , Flame Retardants/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Organophosphates/toxicity , Environmental Monitoring , Organophosphorus Compounds
3.
Environ Pollut ; 342: 123149, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38097162

ABSTRACT

As a new class of organophosphate ester, cresyl diphenyl phosphate (CDP) has been widely monitored in environmental matrices and human samples, nonetheless, its toxicity is not fully understood. Here we described an in-depth analysis of the disruptions in lipid homeostasis of zebrafish following exposure to CDP concentrations ranging from 2.0 to 313.0 µg/L. Nile red staining revealed significant alterations in lipid contents in 72 hpf zebrafish embryos at CDP concentrations of 5.3 µg/L and above. Lipidomic analysis unveiled substantial disruptions in lipid homeostasis. Notably, disruptive effects were detected in various lipid classes, including phospholipids (i.e. cardiolipin, lysophosphatidylcholine, and phosphatidylethanolamine), glycerolipids (triglycerides), and fatty acids (fatty acids (FA) and wax esters (WE)). These alterations were further supported by transcriptional changes, with remarkable shifts observed in genes associated with lipid synthesis, transport, and metabolism, encompassing phospholipids, glycerolipids, fatty acids, and sphingolipids. Furthermore, CDP exposure elicited a significant elevation in ATP content and swimming activity in embryos, signifying perturbed energy homeostasis. Taken together, the present findings underscore the disruptive effects of CDP on lipid homeostasis, thereby providing novel insights essential for advancing the health risk assessment of organophosphate flame retardants.


Subject(s)
Biphenyl Compounds , Flame Retardants , Zebrafish , Animals , Humans , Zebrafish/metabolism , Organophosphates/toxicity , Organophosphates/metabolism , Homeostasis , Phosphates/metabolism , Fatty Acids/metabolism , Esters/metabolism , Flame Retardants/toxicity , Flame Retardants/metabolism
4.
Thorac Cancer ; 14(33): 3247-3258, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37795778

ABSTRACT

The third most prevalent type of epidermal growth factor receptor (EGFR) mutation, EGFR exon 20 insertions (EGFRex20ins), involves 2%-12% of all cases of EGFR-positive non-small cell lung cancer (NSCLC). Approximately 90% of the mutations occur within the loop structure region, and the most frequently reported subtypes are A767_V769dup and S768_D770dup, which together account for almost 50% of instances. Apart from the unique subtype of A763_Y764insFQEA, NSCLCs with EGFRex20ins are resistant to approved EGFR tyrosine kinase inhibitors (TKIs) and are also insensitive to chemotherapy or immunotherapy. A new modality of treatment for NSCLC patients with EGFRx20ins has been established with the approval of mobocertinib and amivantamab. There are also numerous novel targeted treatments for NSCLC with EGFRex20ins in development, which are anticipated to improve this patient population's survival even further. This review provides a reference for the clinical management of these patients by summarizing the most recent epidemiological, and clinicopathological characteristics, diagnostic techniques, and therapeutic advances of EGFRex20ins in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/epidemiology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Mutagenesis, Insertional , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , ErbB Receptors , Exons
5.
Environ Sci Technol ; 57(42): 15794-15805, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37812749

ABSTRACT

Synthetic glucocorticoids have been widely detected in aquatic ecosystems and may pose a toxicological risk to fish. In the present study, we described multiple end point responses of zebrafish to a commonly prescribed glucocorticoid, prednisolone (PREL), at concentrations between 0.001 and 9.26 µg/L. Of 23 end points monitored, 7 were affected significantly. Significant increases in the frequency of yolk extension formation, spontaneous contraction, heart rate, and ocular melanin density and significant decreases of ear-eye distance at PREL concentrations of 0.001 µg/L and above clearly pointed to the acceleration of embryonic development of zebrafish by PREL. Further confirmation came from the alterations in somite numbers, head-trunk angle, and yolk sac size, as well as outcomes obtained via RNA sequencing, in which signaling pathways involved in tissue/organ growth and development were highly enriched in embryos upon PREL exposure. In addition, the crucial role of glucocorticoid receptor (GR) for PREL-induced effects was confirmed by both, the coexposure to antagonist mifepristone (RU486) and GR-/- mutant zebrafish experiments. We further demonstrated similar accelerations of embryonic development of zebrafish upon exposure to 11 additional glucocorticoids, indicating generic adverse effect characteristics. Overall, our results revealed developmental alterations of PREL in fish embryos at low concentrations and thus provided novel insights into the understanding of the potential environmental risks of glucocorticoids.


Subject(s)
Glucocorticoids , Prednisolone , Animals , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Prednisolone/toxicity , Prednisolone/metabolism , Zebrafish/genetics , Receptors, Glucocorticoid/metabolism , Ecosystem , Embryonic Development , Embryo, Nonmammalian/metabolism
6.
Environ Int ; 178: 108042, 2023 08.
Article in English | MEDLINE | ID: mdl-37399767

ABSTRACT

Over a third of the global chemical production and sales occurred in China, which make effective assessment and management for chemicals produced by China's chemical industry essential not just for China but for the world. Here, we systematical assessed the persistence (P), bioaccumulation (B), mobility (M) and toxicity (T) potency properties for the chemicals listed in Inventory of Existing Chemical Substances of China (IECSC) via experimental data retrieved from large scale databases and in silico data generated with well-established models. Potential PBT, PMT and PB&MT substances were identified. High risk potentials were highlighted for groups of synthetic intermediates, raw materials, as well as a series of biocides. The potential PBT and PMT synthetic intermediates and/or raw materials unique to the IECSC were dominated with organofluorines, for example, the intermediates used as electronic light-emitting materials. Meanwhile, the biocides unique to the IECSC were mainly organochlorines. Some conventional classes of insecticides, such as organochlorines and pyrethroids, were classified as being of high concern. We further identified a group of PB&MT substances that were considered to be both "bioaccumulative" and "mobile". Their properties and common substructures for several major clusters were characterized. The present results prioritized groups of substances with high potentials to cause adverse effects to the environment and humans, many of which have not yet been fully recognized.


Subject(s)
Bioaccumulation , Humans , China , Risk Assessment
7.
Environ Sci Technol ; 57(12): 4959-4970, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36935584

ABSTRACT

Cardiovascular diseases are the leading cause of premature death in humans and remain a global public health challenge. While age, sex, family history, and false nutrition make a contribution, our understanding of compounds acting as cardiovascular disruptors is far from complete. Here, we aim to identify cardiovascular disruptors via a reduced transcriptome atlas (RTA) approach, which integrates large-scale transcriptome data sets of zebrafish and compiles a specific gene panel related to cardiovascular diseases. Among 767 gene expression profiles covering 81 environmental compounds, 11 priority compounds are identified with the greatest effects on the cardiovascular system at the transcriptional level. Among them, metals (AgNO3, Ag nanoparticles, arsenic) and pesticides/biocides (linuron, methylparaben, triclosan, and trimethylchlorotin) are identified with the most significant effects. Distinct transcriptional signatures are further identified by the percentage values, indicating that different physiological endpoints exist among prioritized compounds. In addition, cardiovascular dysregulations are experimentally confirmed for the prioritized compounds via alterations of cardiovascular physiology and lipid profiles of zebrafish. The accuracy rate of experimental verification reaches up to 62.9%. The web-based RTA analysis tool, Cardionet, for rapid cardiovascular disruptor discovery was further provided at http://www.envh.sjtu.edu.cn/cardionet.jsp. Our integrative approach yields an efficient platform to discover novel cardiovascular-disrupting chemicals in the environment.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Metal Nanoparticles , Animals , Humans , Zebrafish/genetics , Cardiovascular Diseases/metabolism , Silver , Gene Expression Profiling , Transcriptome , Embryo, Nonmammalian/metabolism
8.
PeerJ ; 11: e14996, 2023.
Article in English | MEDLINE | ID: mdl-36923501

ABSTRACT

Background: Lung adenocarcinoma is one of the most common tumors, and cisplatin is frequently used in treating lung adenocarcinoma patients. This study aimed to look into the roles and mechanisms of HNF4G in cisplatin resistance of lung adenocarcinoma. Materials & Methods: Cisplatin resistance and gene expression data of 542 cell lines from the CTRP and CCLE databases were analyzed. HNF4G expression was detected in the lung adenocarcinoma cell lines after treatment with various concentrations of cisplatin. Cisplatin sensitivity curves were detected in cells that overexpressed or knocked down HNF4G. The ChIP-Seq data were then analyzed to identify the targets of HNF4G involved in cisplatin resistance. Expression and phosphorylation of the MAPK6/Akt pathway were detected after HNF4G was overexpressed or knocked down. Finally, ChIP-qPCR and dual-luciferase assays were used to investigate the regulation of HNF4G on MAPK6. Results: In cell lines, high expression of HNF4G was significantly positively correlated with cisplatin resistance, and lung adenocarcinoma patients who had high HNF4G expression had a poor prognosis. Cisplatin treatment increased HNF4G expression, and overexpression of HNF4G significantly increased the resistance to cisplatin in A549 and HCC827 cells, whereas knockdown of HNF4G had the opposite effect. HNF4G overexpression increased MAPK6 expression and activated the MAPK6/Akt pathway, while an Akt inhibitor reduced the effects of HNF4G on cisplatin resistance. HNF4G bound to the MAPK6 promoter region, promoting MAPK6 expression, according to ChIP-qPCR and luciferase assays. Conclusion: By binding to the MAPK6 promoter region, HNF4G promotes MAPK6 expression and subsequent Akt phosphorylation, resulting in resistance to cisplatin in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Cisplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/drug therapy , Signal Transduction , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Adenocarcinoma of Lung/drug therapy , Hepatocyte Nuclear Factor 4/genetics
9.
Technol Cancer Res Treat ; 21: 15330338221109647, 2022.
Article in English | MEDLINE | ID: mdl-35730203

ABSTRACT

Background: The rarity of pulmonary sarcomatoid carcinoma (PSC) and the lack of prospective clinical trials have led to limited knowledge of its clinical characteristics. This study aimed to evaluate the survival and prognostic factors of PSC and to build a nomogram for clinical practice. Methods: Eligible patients diagnosed from 2010 to 2016 were selected from the Surveillance, Epidemiology, and End Results (SEER) database. We compared the clinical characteristics and survival times of PSC patients with those of lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC) patients. We also used univariate and multivariable Cox regression to estimate mortality hazard ratios among patients with PSC, while a visual nomogram was established to judge the prognosis. Discrimination, calibration, clinical utility, and reproducibility were validated by Harrell's concordance index (C-index), the area under the curve (AUC), calibration curves, and decision curve analysis (DCA). Results: A total of 400 PSC patients (0.42%) were identified in the SEER database, whereas 58 474 and 33 637 patients were diagnosed with LADC and LSCC, respectively. Age, T stage, grade, surgery, and radiation were shown to be significant prognostic factors in the Cox regression analyses and were included in the nomogram as predictors. The C-index of the nomogram in the validation set was 0.759. The AUC also demonstrated the good performance of the nomogram, and DCA demonstrated its good clinical applicability. Conclusion: We established a novel nomogram to predict the prognosis of PSC, which can help clinicians make tailored decisions and adjust follow-up management strategies, and can provide accurate and individualized survival predictions.


Subject(s)
Carcinoma, Squamous Cell , Nomograms , Carcinoma, Squamous Cell/pathology , Humans , Lung/pathology , Prognosis , Reproducibility of Results , SEER Program
10.
Microvasc Res ; 140: 104302, 2022 03.
Article in English | MEDLINE | ID: mdl-34919942

ABSTRACT

PURPOSE: Myocardial ischemia/reperfusion injury (MI/RI) is a major problem in the clinical treatment of ischemic cardiomyopathy, and its specific underlying mechanisms are complicated and still unclear. A number of studies have indicated that the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxidase-1(HO-1) signaling pathway might serve as an important target for the management of MI/RI. Catalpol is a kind of iridoid glucoside that has been found to exhibit diverse anti-inflammatory and antioxidant properties. This study was aimed at investigating the role of Catalpol in targeting MI/RI and its related mechanisms in an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro and a preclinical ischemia/reperfusion (I/R) model. METHODS: This study using both in vitro and in vivo models investigated the possible role and underlying mechanisms used by Catalpol for modulating of MI/RI. The potential effects of Catalpol on the viability of cardiomyocytes were measured by cell counting kit-8 (CCK-8) assays. The phenotypes of myocardial injury, oxidative stress and inflammation markers were measured by western blot, immunofluorescence, enzyme-linked immunosorbent assay (ELISA) etc. Nrf2/HO-1 signaling pathway was detected by immunofluorescence and western blot analysis. RESULTS: We found that Catalpol significantly suppressed the process of MI/RI and protected OGD/R-treated cardiomyocytes by inhibiting the various markers of inflammation and suppressing oxidative stress. Additionally, mechanistically it was also demonstrated that Catalpol could effectively activate Nrf2/HO-1 signaling pathway to suppress the damage caused by inflammation and oxidative stress in MI/RI. CONCLUSION: In summary, the findings suggest that Catalpol exerted significant cardioprotective effects following myocardial ischemia, possibly through the activation of the Nrf2/HO-1 signaling pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Heme Oxygenase-1/metabolism , Iridoid Glucosides/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Apoptosis/drug effects , Cell Hypoxia , Cell Line , Disease Models, Animal , Glucose/deficiency , Humans , Inflammation Mediators/metabolism , Male , Membrane Proteins , Mice, Inbred C57BL , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Signal Transduction
11.
Environ Sci Technol ; 55(22): 15266-15275, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34714046

ABSTRACT

Cell-based bioassays represent nearly half of all high-throughput screens currently conducted for risk assessment of environmental chemicals. However, there has long been a concern about the sensitivity and heterogeneity among cell lines, which were explored only in a limited manner. Here, we address this question by conducting a large-scale transcriptome analysis of the responses of discrete cell lines to specific molecules. We report the collections of >223 300 gene expression profiles from a wide array of cell lines exposed to 2243 compounds. Our results demonstrate distinct responses among cell lines at both the gene and the pathway levels. Temporal variations for a very large proportion of compounds occur as well. High sensitivity and/or heterogeneity is either cell line-specific or universal depending on the modes of action of the compounds. Among 12 representative pathways analyzed, distinct cell-chemical interactions exist. On one hand, lung carcinoma cells are always best suited for glucocorticoid receptor agonist identification, while on the other hand, high sensitivity and heterogenic features are universal for histone deacetylase inhibitors and ATPase inhibitors. Our data provide novel insights into the understanding of cell-specific responses and interactions between cells and xenobiotics. The findings have substantial implications for the design, execution, and interpretation of high-throughput screening assays in (eco)toxicology.


Subject(s)
Gene Expression Profiling , Transcriptome , Cell Line , High-Throughput Screening Assays , Xenobiotics
12.
Am J Transl Res ; 13(1): 234-252, 2021.
Article in English | MEDLINE | ID: mdl-33527021

ABSTRACT

The challenge to avoid or reduce cardiopulmonary bypass-related injuries in cardiovascular surgery remains a major issue. Remote ischemic preconditioning (RIPC) remains a promising strategy whose clinical applications appear to be significantly more realistic and extensive as compared with other conservative or surgical strategies. However, considering its underlying mechanism(s) are still unclear, novel ideas and methods must be explored to enhance its potential in clinical applications. Long noncoding RNAs (LncRNAs) are a kind of RNAs that have been implicated in the occurrence and development of cardiovascular diseases. The differently expressed LncRNAs and their biological effects during RIPC have not been explored previously. In this study, mouse and human LncRNA microarrays were used to investigate the expression signatures of LncRNAs and mRNAs in the myocardial tissue after RIPC. Therafter, homology comparisons were used to screen homologous genes from differentially expressed LncRNAs. Competing endogenous RNA (ceRNA) mechanism analysis were employed to find the matching relationship among homologous LncRNA, mRNA and microRNA. 554 differentially expressed mouse LncRNAs (281 up-regulated/273 down-regulated) and 1392 differentially expresssed human LncRNAs (635 up-regulated/757 down-regulated) were selected for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to quantify these LncRNAs, homology comparison and ceRNA mechanism analysis provided a pair of homologous LncRNAs (ENST00000574727 & ENSMUST00000123752) for further research investigation. Overall, in this study, a number of differentially expressed LncRNAs were identified which may play an important role the regulation of both inflammation and cell proliferation. The findings may thus unveil the mystery of RIPC and discover a novel protective mechanism for the mitigation of cardiovascular ischemia-reperfusion disease.

13.
Oxid Med Cell Longev ; 2021: 8836058, 2021.
Article in English | MEDLINE | ID: mdl-33574981

ABSTRACT

A random-pattern skin flap plays an important role in the field of wound repair; the mechanisms that influence the survival of random-pattern skin flaps have been extensively studied but little attention has been paid to endogenous counterinjury substances and mechanism. Previous reports reveal that the apelin-APJ axis is an endogenous counterinjury mechanism that has considerable function in protecting against infection, inflammation, oxidative stress, necrosis, and apoptosis in various organs. As an in vivo study, our study proved that the apelin/APJ axis protected the skin flap by alleviating vascular oxidative stress and the apelin/APJ axis works as an antioxidant stress factor dependent on CaMKK/AMPK/GSK3ß signaling. In addition, the apelin/APJ-manipulated CaMKK/AMPK/GSK3ß-dependent mechanism improves HUVECs' resistance to oxygen and glucose deprivation/reperfusion (OGD/R), reduces ROS production and accumulation, maintained the normal mitochondrial membrane potential, and suppresses oxidative stress in vitro. Besides, activation of the apelin/APJ axis promotes vascular migration and angiogenesis under relative hypoxia condition through CaMKK/AMPK/GSK3ß signaling. In a word, we provide new evidence that the apelin/APJ axis is an effective antioxidant and can significantly improve the vitality of random flaps, so it has potential be a promising clinical treatment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Apelin/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Signal Transduction , Skin/pathology , Wound Healing , Animals , Cell Movement/drug effects , Cell Survival/drug effects , Glucose , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Models, Biological , NF-E2-Related Factor 2/metabolism , Neovascularization, Physiologic/drug effects , Oxygen , Phosphorylation/drug effects , Phosphoserine/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Reperfusion Injury/pathology , Signal Transduction/drug effects , Skin/drug effects , Superoxide Dismutase/metabolism , Wound Healing/drug effects
14.
Environ Sci Technol ; 55(2): 1155-1166, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33373191

ABSTRACT

Increasing rare earth element (REE) mining and refining activities have led to a considerable release of these substances into aquatic environment, yet the knowledge of their impacts on aquatic organisms is still limited. Here, we explored the developmental effects of 16 REEs (concentration ranged from 0.46 to 1000 mg/L) to zebrafish embryos and highlighted the adverse effects of lanthanum (La) and praseodymium (Pr). Among the multiple developmental parameters measured, the significant effects on swimming behavior and cardiac physiology were the most prominent. Transcriptomic analysis of La and Pr at concentrations of 1.1 to 10 mg/L revealed their rather uniform effects at molecular levels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis revealed that among others, notch, glutamate, and serotonin signaling, as well as cardiac hypertrophy and cardiac muscle contraction, were significantly affected. These changes of neural signaling were consistent with behavior effects observed and supported by neurotransmitter changes and thus provide a reasonable molecular mechanistic explanation. Furthermore, increased DNA damage and apoptotic activity at high concentrations were observed, especially in the heart. They may contribute to explain the observed adverse morphological and physiological outcomes, such as pericardial edema. The effect concentrations observed in the present study were comparable to the concentrations of REE residues at highly contaminated sites (several mg/L), indicating ecotoxicological effects at environmentally relevant concentrations. Overall, the present data help to clarify the potential developmental toxicity of REEs that was not yet fully recognized and thus contribute to their environmental risk assessment.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Animals , Lanthanum/toxicity , Metals, Rare Earth/analysis , Metals, Rare Earth/toxicity , Mining , Praseodymium , Water Pollutants, Chemical/toxicity , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...