Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(13): e202316021, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38143241

ABSTRACT

An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.

2.
Nat Chem ; 15(5): 714-721, 2023 May.
Article in English | MEDLINE | ID: mdl-37127757

ABSTRACT

Molecules that contain a stereogenic phosphorus atom are crucial to medicine, agrochemistry and catalysis. While methods are available for the selective construction of various chiral organophosphorus compounds, catalytic enantioselective approaches for their synthesis are far less common. Given the vastness of possible substituent combinations around a phosphorus atom, protocols for their preparation should also be divergent, providing facile access not only to one but to many classes of phosphorus compounds. Here we introduce a catalytic and enantioselective strategy for the preparation of an enantioenriched phosphorus(V) centre that can be diversified enantiospecifically to a wide range of biologically relevant phosphorus(V) compounds. The process, which involves an enantioselective nucleophilic substitution catalysed by a superbasic bifunctional iminophosphorane catalyst, can accommodate a wide range of carbon substituents at phosphorus. The resulting stable, yet versatile, synthetic intermediates can be combined with a multitude of medicinally relevant O-, N- and S-based nucleophiles.

3.
Chem Sci ; 10(13): 3733-3737, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-31015917

ABSTRACT

An oxidant-free Rh(iii)-catalyzed direct amidation of alkyl dithianes via C(sp3)-H bond activation utilizing diverse and robust dioxazolone reagents is reported. The reaction hinges on use of a Cp*Rh(iii) complex in combination with an essential amino-carboxylate additive to generate usefully protected 1,3-aminoaldehyde derivatives. The scalability of the reaction was demonstrated as was a series of downstream product functionalizations, including dithiane deprotection, anion alkylation and reductive desulfurization, highlighting the general applicability of this transformation in the synthesis of novel scaffolds and building blocks.

4.
J Am Chem Soc ; 139(49): 17755-17758, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29120635

ABSTRACT

The first enantioselective synthesis of (-)-himalensine A has been achieved in 22 steps. The synthesis was enabled by a novel catalytic, enantioselective prototropic shift/furan Diels-Alder (IMDAF) cascade to construct the ACD tricyclic core. A reductive radical cyclization cascade was utilized to build the B ring, and end-game manipulations featuring a molecular oxygen mediated γ-CH oxidation, a Stetter cyclization to access the pendant cyclopentenone, and a highly chemoselective lactam reduction delivered the natural product target.

5.
Inorg Chem ; 54(7): 3118-24, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25799231

ABSTRACT

A series of organometallic complexes of the form [(PhH)Ru(amino acid)](+) have been synthesized using amino acids able to act as tridentate ligands. The straightforward syntheses gave enantiomerically pure complexes with two stereogenic centers due to the enantiopurity of the chelating ligands. Complexes were characterized in the solid-state and/or solution-state where the stability of the complex allowed. The propensity toward labilization of the coordinatively saturated complexes was investigated. The links between complex stability and structural features are very subtle. Nonetheless, H/D exchange rates of coordinated amino groups reveal more significant differences in reactivity linked to metallocycle ring size resulting in decreasing stability of the metallocycle as the amino acid side-chain length increases. The behavior of these systems in acid is unusual, apparently labilizing the carboxylate residue of the amino acid. This acid-catalyzed hemilability in an organometallic is relevant to the use of Ru(II) arenes in medicinal contexts due to the relatively low pH of cancerous cells.


Subject(s)
Amino Acids/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Benzene/chemistry , Ligands , Molecular Structure , Organometallic Compounds/chemical synthesis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...