Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1149906, 2023.
Article in English | MEDLINE | ID: mdl-37822967

ABSTRACT

Peroxisome proliferator-activated receptor PPARγ coactivator-α (PGC-1α) is concentrated in inhibitory interneurons and plays a vital role in neuropsychiatric diseases. We previously reported some characteristic features of schizophrenia (SZ) in GABAergic neuron-specific Pgc-1alpha knockout (KO) mice (Dlx5/6-Cre: Pgc-1alphaf/f). However, there is a fundamental gap in the molecular mechanism by which the Pgc-1alpha gene is involved in the neurobehavioral abnormalities of SZ. The loss of critical period (CP) triggers-maturations of parvalbumin interneurons (PVIs) and brakes-and the formation of perineuronal nets (PNNs) implicates mistimed trajectories during adult brain development. In this study, using the Pgc-1alpha KO mouse line, we investigated the association of Pgc-1alpha gene deletion with SZ-like behavioral deficits, PVI maturation, PNN integrity and synaptic ultrastructure. These findings suggest that Pgc-1alpha gene deletion resulted in a failure of CP onset and closure, thereby prolonging cortical plasticity timing. To determine whether the manipulation of the PNN structure is a potential method of altering neuronal plasticity, GM6001, a broad-spectrum matrix metalloproteinase (MMP)-inhibitor was applied. Here we confirmed that the treatment could effectively correct the CP plasticity window and ameliorate the synaptic ultrastructure in the Pgc-1alpha KO brain. Moreover, the intervention effect on neuronal plasticity was followed by the rescue of short-term habituation deficits and the mitigation of aberrant salience, which are some characteristic features of SZ. Taken collectively, these findings suggest that the role of PGC-1α in regulating cortical plasticity is mediated, at least partially, through the regulation of CP onset/closure. Strategically introduced reinforcement of molecular brakes may be a novel preventive therapy for psychiatric disorders associated with PGC-1α dysregulation.

2.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499306

ABSTRACT

Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus far, the role of FOXG1 in adult hippocampal neurogenesis is largely unknown. Utilizing CAG-loxp-stop-loxp-Foxg1-IRES-EGFP (Foxg1fl/fl), a specific mouse line combined with CreAAV infusion, we successfully forced FOXG1 overexpressed in the hippocampal dentate gyrus (DG) of the genotype mice. Thereafter, we explored the function of FOXG1 on neuronal lineage progression and hippocampal neurogenesis in adult mice. By inhibiting p21cip1 expression, FOXG1-regulated activities enable the expansion of the precursor cell population. Besides, FOXG1 induced quiescent radial-glia like type I neural progenitor, giving rise to intermediate progenitor cells, neuroblasts in the hippocampal DG. Through increasing the length of G1 phase, FOXG1 promoted lineage-committed cells to exit the cell cycle and differentiate into mature neurons. The present results suggest that FOXG1 likely promotes neuronal lineage progression and thereby contributes to adult hippocampal neurogenesis. Elevating FOXG1 levels either pharmacologically or through other means could present a therapeutic strategy for disease related with neuronal loss.


Subject(s)
Neural Stem Cells , Neurogenesis , Mice , Animals , Neurogenesis/genetics , Hippocampus/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Cell Proliferation , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
3.
Cells ; 11(18)2022 09 13.
Article in English | MEDLINE | ID: mdl-36139423

ABSTRACT

Emerging evidence suggests that the proper control of mitochondrial dynamics provides a window for therapeutic intervention for Alzheimer's disease (AD) progression. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator 1 (PGC-1a) has been shown to regulate mitochondrial biogenesis in neurons. Thus far, the roles of PGC-1a in Alzheimer's disease and its potential value for restoring mitochondrial dysfunction remain largely unknown. In the present study, we explored the impacts of PGC-1a on AD pathology and neurobehavioral dysfunction and its potential mechanisms with a particular focus on mitochondrial dynamics. Paralleling AD-related pathological deposits, neuronal apoptosis, abnormal mitochondrial dynamics and lowered membrane potential, a remarkable reduction in the expression of PGC-1a was shown in the cortex of APP/PS1 mice at 6 months of age. By infusing AAV-Ppargc1α into the lateral parietal association (LPtA) cortex of the APP/PS1 brain, we found that PGC-1a ameliorated AD-like behavioral abnormalities, such as deficits in spatial reference memory, working memory and sensorimotor gating. Notably, overexpressed PGC-1a in LPtA rescued mitochondrial swelling and damage in neurons, likely through correcting the altered balance in mitochondrial fission-fusion and its abnormal distribution. Our findings support the notion that abnormal mitochondrial dynamics is likely an important mechanism that leading to mitochondrial dysfunction and AD-related pathological and cognitive impairments, and they indicate the potential value of PGC-1a for restoring mitochondrial dynamics as an innovative therapeutic target for AD.


Subject(s)
Alzheimer Disease , Mitochondrial Dynamics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Alzheimer Disease/metabolism , Animals , Mice , Organelle Biogenesis , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
4.
J Alzheimers Dis ; 86(3): 1255-1273, 2022.
Article in English | MEDLINE | ID: mdl-35180113

ABSTRACT

BACKGROUND: Several recent findings have revealed that targeting of cell cycle reentry and (or) progression may provide an opportunity for the therapeutic intervention of Alzheimer's disease (AD). FOXG1 has been shown to play important roles in pattern formation, cell proliferation, and cell specification. Thus far, the roles of FoxG1 and its involvement in AD are largely unknown. OBJECTIVE: Our study aimed to explore the intervention effect of FOXG1 on AD pathology and its potential mechanism with a particular focus on cell cycle regulation. METHODS: We investigated the association of Foxg1 gene variants with AD-like behavioral deficits, p21 expression, neuronal apoptosis, and amyloid-ß (Aß) aggregate formation; we further determined whether targeting FOXG1-regulated cell cycle has therapeutic potential in AD. RESULTS: Paralleling AD-like behavioral abnormalities, neuronal apoptosis, and Aß deposits, a significant reduction in the expression of FOXG1 was observed in APP/PS1 mice at 6 months of age. Using the APP/PS1;Foxg1fl/fl-CreAAV mouse line, we found that FOXG1 potentially antagonized cell cycle reentry by negatively regulating the levels of p21-activated kinase (PAK3). By reducing p21cip1-mediated arrest at the G2 stage and regulating cyclin A1- and cyclin B-dependent progression patterns of the cell cycle, FOXG1 blocked neuronal apoptosis and Aß deposition. CONCLUSION: These results indicate that FOXG1 contributes to the regulation of the neuronal cell cycle, thereby affecting brain abnormalities in AD. An elevation of the FOXG1 level, either pharmacologically or through other means, could present a therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Forkhead Transcription Factors , Nerve Tissue Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Cycle , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Humans , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Presenilin-1/metabolism , p21-Activated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...