Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 132223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777688

ABSTRACT

The combination of crystallization, transparency, and strength is still a challenge for broadening the application of polylactic acid (PLA) films, while it is also difficult to balance. In this work, the long aliphatic chains of octadecylamine (ODA) were grafted onto the surface of cellulose nanocrystal (CNC) by tannic acid oxidation self-polymerization and Michael addition/Schiff base reaction between polytannic acid and ODA. Furthermore, the ODA grafted CNC (g-CNC) was used as green reinforcement for the PLA matrix and a series of PLA/g-CNC nanocomposite films were prepared by the casting method. The DSC, WAXD, POM, UV-vis and stretching test were employed to examine the effect of g-CNC on the properties of the as-prepared PLA/g-CNC nanocomposite films. It shows that the g-CNC is effective to improve the melt crystallization rate of PLA from 11 min to 7.3 min. Most importantly, the crystal size of the PLA spherulites was significantly reduced due to the well dispersion in the amorphous PLA matrix, which would effectively improve the transmittance of the PLA films and synchronously realize the combination of crystallization (62 %) and transparency (80.6 %). Moreover, the improved crystallization could also enhance the heat deformation performance of the PLA films since the heat resistance is closely associated with the crystallinity. Besides, the grafted ODA long chains improve the compatibility between CNC and PLA, leading to the reinforcement of PLA matrix, where the tensile strength reaches 65.05 MPa from 44.31 MPa. Compared with the pristine CNC, the addition of g-CNC makes more comprehensive improvement in the properties of the PLA films.


Subject(s)
Cellulose , Crystallization , Polyesters , Polyesters/chemistry , Cellulose/chemistry , Nanocomposites/chemistry , Tensile Strength , Nanoparticles/chemistry , Amines/chemistry , Tannins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...