Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(38): eadh7746, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37729403

ABSTRACT

Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950-1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans' water masses.

2.
Sci Bull (Beijing) ; 68(9): 946-960, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085399

ABSTRACT

The Southern Ocean has warmed substantially, and up to early 21st century, Antarctic stratospheric ozone depletion and increasing atmospheric CO2 have conspired to intensify Southern Ocean warming. Despite a projected ozone recovery, fluxes to the Southern Ocean of radiative heat and freshwater from enhanced precipitation and melting sea ice, ice shelves, and ice sheets are expected to increase, as is a Southern Ocean westerly poleward intensification. The warming has far-reaching climatic implications for melt of Antarctic ice shelf and ice sheet, sea level rise, and remote circulations such as the intertropical convergence zone and tropical ocean-atmosphere circulations, which affect extreme weathers, agriculture, and ecosystems. The surface warm and freshwater anomalies are advected northward by the mean circulation and deposited into the ocean interior with a zonal-mean maximum at ∼45°S. The increased momentum and buoyancy fluxes enhance the Southern Ocean circulation and water mass transformation, further increasing the heat uptake. Complex processes that operate but poorly understood include interactive ice shelves and ice sheets, oceanic eddies, tropical-polar interactions, and impact of the Southern Ocean response on the climate change forcing itself; in particular, limited observations and low resolution of climate models hinder rapid progress. Thus, projection of Southern Ocean warming will likely remain uncertain, but recent community effort has laid a solid foundation for substantial progress.

3.
Sci Adv ; 8(16): eabj8394, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35442733

ABSTRACT

How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.

4.
Comb Chem High Throughput Screen ; 25(9): 1450-1461, 2022.
Article in English | MEDLINE | ID: mdl-34182904

ABSTRACT

BACKGROUND: The Peroxisome Proliferator-Activated Receptors (PPARs) are ligandactivated transcription factors belonging to the nuclear receptor family. The roles of PPARα in fatty acid oxidation and PPARγ in adipocyte differentiation and lipid storage have been widely characterized. Compounds with dual PPARα/γ activity have been proposed, combining the benefits of insulin sensitization and lipid lowering into one drug, allowing a single drug to reduce hyperglycemia and hyperlipidemia while preventing the development of cardiovascular complications. METHODS: The new PPARα/γ agonists were screened through virtual screening of pharmacophores and molecular dynamics simulations. First, in the article, the constructed pharmacophore was used to screen the Ligand Expo Components-pub database to obtain the common structural characteristics of representative PPARα/γ agonist ligands. Then, the accepted ligand structure was modified and replaced to obtain 12 new compounds. Using molecular docking, ADMET and molecular dynamics simulation methods to screen the designed 12 ligands, analyze their docking scores when they bind to the PPARα/γ dual targets, their stability and pharmacological properties when they bind to the PPARα/γ dual targets. RESULTS: We performed pharmacophore-based virtual screening for 22949 molecules in Ligand Expo Components-pub database. The compounds that were superior to the original ligand were performed structural analysis and modification, and a series of compounds with novel structures were designed. Using precise docking, ADMET prediction and molecular dynamics methods to screen and verify newly designed compounds, and the above compounds show higher docking scores and lower side effects. CONCLUSION: 9 new PPARα/γ agonists were obtained by pharmacophore modeling, docking analysis and molecular dynamics simulation.


Subject(s)
Molecular Dynamics Simulation , PPAR alpha , Ligands , Lipids , Molecular Docking Simulation , PPAR alpha/agonists , PPAR gamma/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...