Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174415, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969116

ABSTRACT

Mercury (Hg) alkylation and methane (CH4) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH4 emissions. However, the relevance between Hg alkylation and CH4 emissions, especially their simultaneous reduction strategies, remains poorly understood. Here, we investigated the effects of biochar (BC), selenium (Se) and rice straw (RS) amendments on Hg alkylation and CH4 emissions in paddy soil, and the accumulation of Hg speciation. Results found that both BC and RS amendments significantly increased the levels of soil organic carbon (SOC) and humification index (HIX). Furthermore, BC decreased the concentrations of Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) by 63.1%, 53.6% and 100% in rice grains. However, RS increased Hg(II) concentration but decreased the total Hg (THg), MeHg and EtHg concentrations in rice grains. Compared to the CK, RS significantly increased CH4 emissions, while BC decreased CH4 emissions, and Se showed no significant difference. Se amendment increased the Hg(II) and EtHg concentrations by 20.3% and 17.0% respectively, and decreased the MeHg concentration in grains by 58.3%. Both BC and RS impacted the abundance of methanogens by enhancing SOC and HIX, subsequently modulating the relevance between Hg alkylation and CH4 emissions. These findings provide insights into the relevance between Hg alkylation and CH4 emissions and propose potential mitigation mechanisms in Hg-contaminated paddy soil.

2.
Chemosphere ; 357: 142047, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621485

ABSTRACT

Soil washing technology plays an important role in the removal of heavy metals, and the efficacy of this process depends on the washing agent used. Due to the difficulty in treating soils contaminated by multiple heavy metals, there is still a need for further exploration of efficient washing agents with low environmental impact. Although single washing agents, such as chelators, can also effectively remove heavy metals from soil, combining efficient washing agents and determining their optimal washing conditions can effectively improve their removal efficiency for multiple heavy metals in soil simultaneously. Based on the previous research, the present study was carried out to combine different types of washing agents to remediate contaminated soils at a commonly e-waste recycling site. The objectives were to investigate their efficient washing conditions and assess the impact of the washing process on the speciation distribution and pollution level associated with heavy metals in soil. The results showed that the combination of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and FeCl3 at a ratio of 6:4 exhibited the most effective removal of Cd, Cu and Ni from the contaminated soil at an e-waste recycling site. Under optimal washing conditions, with a soil-to-liquid ratio of 1:20 and a washing time of 48 h, the removal rates of Cd, Cu and Ni were 96.72%, 69.91% and 76.08%, respectively. It needed to be emphasized that the combination washing agents were able to remove most of the acid-soluble, reducible and oxidizable fractions of heavy metals, and even the removal rates of the stable residual fraction (e.g., of Cd) was at a relatively high level. In addition, the washing process significantly reduced the pollution level associated with heavy metals in soil. This study aid in the development of combined efficient washing agents and explores optimal washing strategies for the remediation of Cd, Cu, and Ni-contaminated soil at e-waste recycling sites. The findings may play a role in enhancing the remediation capabilities for soils contaminated with multiple heavy metals, due to its characteristics of and high-efficiency and environmental friendliness.


Subject(s)
Cadmium , Copper , Electronic Waste , Environmental Restoration and Remediation , Metals, Heavy , Nickel , Recycling , Soil Pollutants , Soil , Soil Pollutants/analysis , Nickel/analysis , Nickel/chemistry , Metals, Heavy/analysis , Cadmium/analysis , Copper/analysis , Copper/chemistry , Environmental Restoration and Remediation/methods , Soil/chemistry
3.
Proc Natl Acad Sci U S A ; 121(9): e2313617121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377215

ABSTRACT

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.

4.
Soft Matter ; 19(48): 9379-9388, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37681714

ABSTRACT

Probing the transient microstructure of soft matter far from equilibrium is an ongoing challenge to understanding material processing. In this work, we investigate inverse worm-like micelles undergoing large amplitude oscillatory shear using time-resolved dielectric spectroscopy. By controlling the Weissenburg number, we compare the non-linear microstructure response of branched and unbranched worm-like micelles and isolate distinct elastic effects that manifest near flow reversal. We validate our dielectric measurements with small angle neutron scattering and employ sequence of physical processes to disentangle the elastic and viscous contributions of the stress.

5.
Environ Pollut ; 330: 121753, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37127235

ABSTRACT

Contamination of soil with cadmium (Cd) threatens food safety and human health. In general, crop straws from contaminated soils could accumulate considerable amounts of Cd. The addition of Cd-containing rice straw can have negative effects on soil environment. In this study, straws varying in Cd concentration were added to soil at a rate of 5% (w/w) to investigate the effects of Cd-containing straw on soil Cd dynamics and soil microbial communities. Results showed that large amounts of Cd, especially bioavailable Cd, were released into soil during the decomposition of Cd-containing straws. The addition of straws with 10, 20 and 40 mg kg-1 Cd increased total Cd in soils from 0.31 mg kg-1 to 0.89, 1.39 and 2.09 mg kg-1, respectively, exceeding the screening value of total Cd < 0.4 mg kg-1 for paddy soils of pH 5.5-6.5 according to Chinese Soil Environmental Quality Standards. Moreover, the addition of Cd-containing straw decreased alpha-diversity of bacterial and fungal communities compared to the clean straw. Indeed, changes in soil factors including pH, Eh, dissolved organic C and Cd level jointly reconstructed soil microbial communities. The addition of Cd-containing straw increased the relative abundance of bacterial species Acidobacteria and Proteobacteria but decreased that of Firmicutes. Meanwhile, it increased the relative abundance of fungal species Basidiomycota and Fusarium which were considered Cd-tolerant. This study revealed the potential environmental risk and the variation of microbial communities caused by increasing soil Cd bioavailability after direct application of Cd-containing rice straw to the field.


Subject(s)
Microbiota , Oryza , Soil Pollutants , Humans , Soil/chemistry , Cadmium/analysis , Soil Pollutants/analysis , Bacteria , Oryza/chemistry
6.
mSystems ; 8(3): e0104922, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37199986

ABSTRACT

The interactions between soil microbiomes at various trophic levels are essential for restoring soil functions. Legumes are considered as "pioneer crops" in degraded or contaminated soils because they can fix nitrogen through symbiotic relationships with rhizobacteria, which promotes soil fertility. However, little is known about the abilities of legumes to contribute to the health of soil contaminated with cadmium (Cd). In this research, we applied a soil amendment (commercial Mg-Ca-Si conditioner, CMC) at two rates (1,500 and 3,000 kg/ha) in a Cd-contaminated soybean field. Bulk and rhizosphere soil samples were collected to assess the amendment-induced effects on four microbial lineages (bacteria, fungi, arbuscular mycorrhizal fungi [AMF], and nematodes) and their functions including Cd stabilization, nutrient cycling, and pathogen control. Compared with the control, both CMC application rates increased the pH and reduced labile Cd fraction in the bulk and rhizosphere soils. Although the total Cd concentrations in the soil were similar, the Cd accumulation in the grains was significantly reduced in treatments of soil amendments. It was observed that the application of CMC can significantly reduce the AMF diversity but increased the diversity of the other three communities. Moreover, the biodiversity within keystone modules (identified by co-occurrence network analysis) played key roles in driving soil multifunctionality. Specifically, key beneficial groups in module 2 such as Aggregicoccus (bacteria), Sordariomycetes (fungi), Glomus (AMF), and Bursaphelenchus (nematode) were strongly associated with soil multifunctionality. By co-culturing bacterial suspensions with the soybean root rot pathogen Fusarium solani in the in vitro assays, we experimentally validated that the application of CMC promoted the suppression of soil bacterial community on pathogens by inhibiting the mycelium growth and spore germination. Also, the bacterial community was more resistant to Cd stress in soils receiving CMC amendment. Our findings provide valuable theoretical references for enhancing soil functions and health via applying a soil amendment (CMC) during Cd-contaminated soil remediation. IMPORTANCE Restoration of microbiome-driven soil functions and health is of great importance during Cd-contaminated soil remediation via soil amendment. Soybean and its symbiotic mutualism can provide abundant nitrogen and phosphorus to relieve the nutrient deficiency of Cd-contaminated soil. This study provides a novel perspective on the potential role of applying a soil amendment (CMC) in enhancing the functions and health of Cd-contaminated soils. Our results showed the distinct differences in soil microbial community responding to amendment-induced changes in edaphic properties. The biodiversity within keystone modules had major contributions to the maintenance of the soil's multifunctionality and health. Additionally, a higher CMC application rate showed more beneficial effects. Collectively, our results enhance our understanding about the effects of applying CMC, together with soybean rotation, to enhance and maintain soil functions and health during the field Cd stabilization process.


Subject(s)
Fabaceae , Microbiota , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Glycine max , Soil Pollutants/analysis , Fungi , Vegetables , Bacteria
7.
J Environ Manage ; 336: 117673, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36933512

ABSTRACT

Straw returning is a sustainable way that does not destroy soil ecology in agronomic management. Some studies have found that straw returning may aggravate or reduce soilborne diseases in the past few decades. Despite the increasing number of independent studies investigated the effect of straw returning on root rot of crops, the quantitative analysis regarding the relationship between straw returning and crop root rot is still undefined. In this study, keywords co-occurrence matrix was extracted from 2489 published studies (published from 2000 to 2022, the same below) on controlling soilborne diseases of crops. The methods used for soilborne diseases prevention have shifted from chemical to biological and agricultural control since 2010. As root rot is the soilborne disease with the largest weight in keyword co-occurrence according to statistics, we further collected 531 articles focusing on crop root rot. Notably, the 531 studies are mainly distributed in the United States, Canada, China and other countries in Europe and the south and southeast of Asia, and focus on the root rot of soybean, tomato, wheat and other important grain crops or economic crops. Based on the meta-analysis of 534 measurements in 47 previous studies, we explored how 10 management factors (soil pH/texture, type/size of straw, depth/rate/cumulative amount of application, days after application, beneficial/pathogenic microorganism inoculated before application and annual N-fertilizer input) during straw returning affect root rot onset worldwide. The results showed that straw size and microorganisms inoculated before straw returning are the key factors affecting the incidence of root rot. In combination with actual agricultural production, detailed advice applicable to traditional farming system on the optimization management of straw returning was given. This study emphasized the significance of straw pretreatment and farmland management to reduce soilborne diseases during straw returning.


Subject(s)
Agriculture , Soil , Soil/chemistry , Agriculture/methods , Crops, Agricultural , Edible Grain , China , Fertilizers
8.
ISME Commun ; 3(1): 14, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813851

ABSTRACT

Developing low-cadmium (Cd) rice cultivars has emerged as a promising avenue for food safety in Cd-contaminated farmlands. The root-associated microbiomes of rice have been shown to enhance rice growth and alleviate Cd stress. However, the microbial taxon-specific Cd resistance mechanisms underlying different Cd accumulation characteristics between different rice cultivars remain largely unknown. This study compared low-Cd cultivar XS14 and hybrid rice cultivar YY17 for Cd accumulation with five soil amendments. The results showed that XS14 was characterized by more variable community structures and stable co-occurrence networks in the soil-root continuum compared to YY17. The stronger stochastic processes in assembly of the XS14 (~25%) rhizosphere community than that of YY17 (~12%) suggested XS14 may have higher resistance to changes in soil properties. Microbial co-occurrence networks and machine learning models jointly identified keystone indicator microbiota, such as Desulfobacteria in XS14 and Nitrospiraceae in YY17. Meanwhile, genes involved in sulfur cycling and nitrogen cycling were observed among the root-associated microbiome of these two cultivars, respectively. Microbiomes in the rhizosphere and root of XS14 showed a higher diversity in functioning, with the significant enrichment of functional genes related to amino acid and carbohydrate transport and metabolism, and sulfur cycling. Our findings revealed differences and similarities in the microbial communities associated with two rice cultivars, as well as bacterial biomarkers predictive of Cd-accumulation capacity. Thus, we provide new insights into taxon-specific recruitment strategies of two rice cultivars under Cd stress and highlight the utility of biomarkers in offering clues for enhancing crop resilience to Cd stresses in the future.

9.
Environ Pollut ; 323: 121270, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36780978

ABSTRACT

Chlorinated organic pollutants (COPs) were widely detected in anaerobic environments while there is limited understanding of their pollution status and potential environmental risks. Here, we applied meta-analysis to identify the occurrence status, pollution sources, and environmental risk of COPs from 246 peer-published literature, including 25 kinds of COPs from 977 sites. The results showed that the median concentrations of COPs were at the ng g-1 level. By the combination of principal component analysis (PCA) and positive matrix factorization (PMF), we established 7 pollution sources for COPs. Environmental risk assessment found 73.3% of selected sites were at a security level but the rest were not, especially for the wetlands. The environmental risk of COPs was usually underestimated by the existing evaluation methods, such as without the consideration of the non-extractable residues (NER) and the multi-process coupling effect. Especially, the synergetic coupling associations between dechlorination and methanogenesis might increase the risk of methane emission that has barely been previously considered in previous risk assessment approaches. Our results expanded the knowledge for the pollution control and remediation of COPs in anaerobic environments.


Subject(s)
Environmental Pollutants , Soil Pollutants , Environmental Pollutants/analysis , Soil/chemistry , Environmental Pollution/analysis , Risk Assessment , Wetlands , Soil Pollutants/analysis , Environmental Monitoring
10.
Sci Total Environ ; 834: 155261, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35447188

ABSTRACT

Atrazine has a detrimental effect on soybean growth in corn-soybean rotation systems. A knowledge gap exists regarding how rhizosphere microbial interactions respond to atrazine stress, and specifically, whether they may alleviate the detriment of atrazine on soybeans, this serving as a target to alleviate the adverse impact. Biochar are widely used for remediation in herbicide contamination soil, however, little is known about how biochar fuels the microbiomes in rhizosphere to improve soybean performance. We investigated the response of the microbial community to atrazine stress with and without biochar application to soybean cultivation in a greenhouse experiment. Atrazine had detrimental effects on soybeans and nodules, reshaping the microbial community in both the bulk and rhizosphere soil. Biochar application was able to ameliorate atrazine effects on soybean and nodule activity, with an increase in competition among microbes in the soybean rhizosphere soils. Biochar favored the probiotics such as the bacteria Lysobacter, Paenarthrobacter, and Sediminibacterium in the rhizosphere soils. The relative abundance of Lysobacter exhibited strong-negative correlations with potential pathogens. Elastic net regression with bioindicators and environmental factors accurately predicted the residual content of atrazine in soil. Collectively, our results provide a practical strategy of using biochar to improve soil quality for corn-soybean rotation that is contaminated with residual atrazine. Overall, beneficial plant microbes and changes in microbial interactions and assembly processes in the soybean rhizosphere are capable of alleviating atrazine stress on soybean growth.


Subject(s)
Atrazine , Microbiota , Soil Pollutants , Atrazine/toxicity , Charcoal , Rhizosphere , Soil , Soil Microbiology , Soil Pollutants/toxicity , Glycine max , Zea mays
11.
Chemosphere ; 300: 134581, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35436460

ABSTRACT

Soil washing is considered a highly efficient technology due to its higher removal rate of multiple heavy metals from contaminated soil. However, previous studies on Cd, Pb and As washing agents for soils with complex contaminations did not consider the differences in As and Cd/Pb properties, resulting in the lack of effective washing compounds and washing conditions for soils with complex contaminations. Moreover, most traditional washing agents can cause secondary pollution. In this study, HEDTA and lactic acid (LA) treatments resulted in a higher Cd and Pb removal, while 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) was more effective in As removal. Most importantly, a new washing strategy was proposed with a new combined high-efficiency washing agents consisting of HEDP + LA + FeCl3 with a ratio of 6:3:1. Considering washing efficiency and consumption under optimal washing conditions, i.e. the soil/liquid (S/L) ratio of 1:20 and washing time of 48 h, the rates of Cd, Pb and As removal were 79.93%, 69.84% and 61.55%, respectively. In addition, washing process could influence the speciation of heavy metals, especially oxidizable and residual Cd and Pb fractions, as well as reducible As fraction. The washing process using the new washing agent can significantly reduce the pollution level and health risk of Cd, Pb and As contamination. The results of this study can provide an efficient washing agent for the remediation of heavy metal-contaminated soils at smelting sites, which will help protect human health.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Etidronic Acid , Humans , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
12.
Ecotoxicol Environ Saf ; 236: 113462, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35397444

ABSTRACT

The Jiangzhe Area was relatively common area that rely on industrial process for rapid development with serious heavy metals contamination. This study investigated the spatial, vertical and speciation distribution, correlation of heavy metals, as well as assessed pollution and health risks in three representative contamination industries at Jingjiang (electroplating site), Taizhou (e-waste recycling site) and Wenzhou (leather production site) in the Jiangzhe Area. The results indicated that the Cr(VI) pollution was serious in all three sites and there was a tendency to gradually decrease with depth. As for other heavy metals, not only the total concentration, but also the addition of acid soluble and reducible speciation generally decreased with soil depth at Jingjiang and Taizhou sites. Significantly positive correlations supported by correlation analysis were detected between the following elements: Cu-Ni (p < 0.01), Cr(VI)-Ni (p < 0.05) and Cr(VI)-Cu (p < 0.05) at Jingjiang site, Cu-Ni (p < 0.01), Cu-Cd (p < 0.01) and Ni-Cd (p < 0.05) at Taizhou site indicating possibly the same sources and pathways of origin, while the significantly negative correlation of Cd-Ni (p < 0.05) at Wenzhou site meaning the different sources. As regards the pollution assessment of topsoil, the mean PI value indicated that Cr(VI) contaminated severe in all three sites. In general, Jingjiang site was severe pollution (4.06), while Taizhou and Wenzhou (2.27 and 2.66) were moderate pollution, as NIPI value shown. In terms of health risk assessment that received much attention, non-carcinogenic risks caused by Pb contamination were significant for children at Jingjiang and Taizhou sites, with the HI values of 3.42E+ 00 and 2.03E+ 00, respectively. Ni caused unacceptable carcinogenic risk for both adults and children at all three sites. The present study can help to better understand the contamination characteristics of heavy metals in the commonly developed industrial area, and thus to control the environmental quality, so as to truly achieve the goal of "Green Deal objectives ".


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Cadmium/analysis , Carcinogens/analysis , Child , China , Environmental Monitoring/methods , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
13.
J Hazard Mater ; 426: 128095, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34952504

ABSTRACT

Soil amendments have been extensively used to remediate heavy metal contaminated soils by immobilizing or altering edaphic properties to reduce the bioavailability of heavy metals. However, the potential influences of long-term soil amendments applications on microbial communities and polluted soil health are still in its infancy despite that have been applied for decades. We used amplicon sequencing and q-PCR array to characterize the root-associated microbial community compositions and rhizosphere functional genes in a five-year field experiment with consecutive application of four amendments (lime, biochar, pig manure, and a commercial Mg-Ca-Si conditioner). Compared with the control, soil amendments reduced the available Cd (CaCl2 extractable Cd) in soils and strongly affected bacterial community compositions in four root-associated niches. Five rare keystone bacterial species were found belonging to the family Gallionellaceae (1), Haliangiaceae (1), Anaerolineaceae (2), and Xanthobacteraceae (1), which significantly correlated with soil pH and the functional genes nifH and phoD. Random forest analysis showed that rhizosphere soil pH and microbial functions, and root-associated keystone bacterial community compositions mainly influenced the Cd concentrations in rice grains. Altogether, our field data revealed five-year consecutive application of soil amendments regulated root-associated microbial community assembly and enhanced microbial functions, thereby improved rhizosphere health of Cd-contaminated soils.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Animals , Cadmium/analysis , Cadmium/toxicity , Charcoal , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Swine
14.
Environ Sci Technol ; 55(20): 14305-14315, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34617741

ABSTRACT

Globally increasing trace metal contamination of soils requires a better mechanistic understanding of metal-stress impacts on microbially mediated nutrient cycling. Herein, a 5-month laboratory experiment was employed to assess the effects of cadmium (Cd) on soil microbial N-cycling processes and associated functional gene abundance, with and without urea amendment. In non-N-amended soils, Cd progressively stimulated microbial populations for N acquisition from initial dissolved organic N (DON) to later recalcitrant organic N. The acceleration of N catabolism was synchronously coupled with C catabolism resulting in increased CO2/N2O fluxes and adenosine triphosphate (ATP) contents. The abundance of microbes deemed inefficient in N catabolism was gradually repressed after an initial stimulation period. We posit that enhanced exergonic N processes diminished the need for endergonic activities as a survival strategy for N communities experiencing metal stress. With urea amendment, Cd exhibited an initial stimulation effect on soil nitrification and a later a promotion effect on mineralization, along with an increase in the associated microbial populations. In N-amended soils, Cd accelerated N/C transformation processes, but decreased N2O and CO2 fluxes by 19 and 14%, respectively. This implies that under eutrophic conditions, Cd synchronously altered microbial C/N metabolism from a dominance of catabolic to anabolic processes. These results infer a nutrient-based adjustment of microbial N-cycling strategies to enhance their metal resistance.


Subject(s)
Cadmium , Soil , Nitrification , Nitrogen/analysis , Soil Microbiology
15.
Environ Pollut ; 268(Pt B): 115933, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33172699

ABSTRACT

Studies on the effects of trace elements (TEs) (e.g. Cu, Cd, Zn) on soil microbial communities have provided useful information on the toxicity of TEs to microbes. However, previous studies mainly focused on the effects of TEs on microbial community structure in intact soil, while there are few studies on the impact of TEs on microbial community structure in soil aggregates. In this study, soils previously polluted for 20 years, and now containing low and high TE concentrations derived from, now abandoned, metal smelters were sampled from the surface layer (0-15 cm) of two adjacent Chinese paddy fields. The aim was to determine the effects of TEs on the soil microbial biomass and community structure in different sized soil aggregates. Long-term high TE pollution decreased microbial biomass concentration and species, changed the proportion of bacteria and fungi and decreased the diversity of bacteria in the different sized aggregates. The microbial communities in soil aggregates became clustered with increasing TE concentrations.


Subject(s)
Microbiota , Soil Pollutants , Trace Elements , Biomass , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity , Trace Elements/analysis
16.
J Zhejiang Univ Sci B ; 20(1): 49-58, 2019.
Article in English | MEDLINE | ID: mdl-30198238

ABSTRACT

The denitrifier method is widely used as a novel pretreatment method for the determination of nitrogen and oxygen isotope ratios as it can provide quantitative and high-sensitivity measurements. Nevertheless, the method is limited by relatively low measurement accuracy for δ18O. In this study, we analyzed the factors influencing the accuracy of δ18O determination, and then systematically investigated the effects of dissolved oxygen concentrations and nitrate sample sizes on estimates of the δ15N and δ18O of nitrate reference materials. The δ18O contraction ratio was used to represent the relationship between the measured difference and true difference between two reference materials. We obtained the following main results: (1) a gas-liquid ratio of 3:10 (v/v) in ordinary triangular flasks and a shaking speed of 120 r/min produced an optimal range (1.9 to 2.6 mg/L) in the concentration of dissolved oxygen for accurately determining δ18O, and (2) the δ18O contraction ratio decreased as nitrate sample size decreased within a certain range (1.0 to 0.1 µmol). Our results suggested that δ18O contraction is influenced mainly by dissolved oxygen concentrations in pure culture, and provided a model for improving the accuracy of oxygen isotope analysis.


Subject(s)
Denitrification , Nitrates/analysis , Oxygen Isotopes/analysis
17.
Environ Pollut ; 243(Pt A): 510-518, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30216883

ABSTRACT

Heavy metal pollution can decrease the soil microbial biomass and significantly alter microbial community structure. In this study, a long-term field experiment (5 years) and short-term laboratory experiment (40 d) were employed to evaluate the effects of heavy metals (Cd, Cu, Zn), and their combinations at different concentrations, on the soil microbial biomass and the bacterial community. The ranges of heavy metal concentration in the long-term and short-term experiments were similar, with concentration ranges of Cd, Cu and Zn of about 0.3-1.5, 100-500, and 150-300 mg kg-1, respectively. Microbial biomass decreased with increasing soil heavy metal concentrations in both the long-term and short-term experiments. The interaction between soil physicochemical factors (pH, TN, TC) and heavy metals (Cd, Cu, Zn) played a major role in change in the bacterial community in long-term polluted soil. In the laboratory experiment, although each heavy metal had an adverse effect on the microbial biomass and community structure, Cu appeared to have a greater role in the changes compared to Cd and Zn. However, the synergistic effects of the heavy metals were greater than those of the single metals and the synergistic effect between Cu and Cd was greater than that of Cu and Zn.


Subject(s)
Metals, Heavy/analysis , Soil Microbiology , Soil Pollutants/analysis , Bacteria/drug effects , Biomass , Environmental Monitoring , Environmental Pollution , Soil/chemistry , Zinc/pharmacology
18.
Dose Response ; 16(3): 1559325818796937, 2018.
Article in English | MEDLINE | ID: mdl-30202249

ABSTRACT

It is now well-confirmed that hydrophilic surfaces including those within the cell generate structural changes in water. This interfacial water is ordered and acquires features different from the bulk. Amongst those features is the exclusion of colloidal and molecular solutes from extensive regions next to the hydrophilic surface, thereby earning it the label of "exclusion zone" (EZ) water. The transition of ordered EZ water to bulk serves as an important trigger of many cellular physiological functions, and in turn cellular health. We tested physiological doses of half a dozen agents generally identified to restore or build health on the extent to which they build EZs. All agents known to enhance biological function resulted in EZ expansion. On the other hand, the weed killer, glyphosate, considerably diminished EZ size. While the expansion effect of the health-promoting agents was observed over a wide range of concentrations, excessive doses ultimately reduced EZ size. We hypothesize that EZ buildup may be a mechanistic feature underlying many health-promoting agents, while agents that impair health may act by diminishing the amount of EZ water.

19.
Sci Total Environ ; 639: 1175-1187, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29929286

ABSTRACT

Identifying and eliminating pollutant sources of water bodies is critical for drinking water safety. In this research, river water, reservoir water and groundwater samples (n = 259) were collected from November 2015 to January 2017. Spatial Analysis was made of the isotopic compositions of potential nitrate sources (i.e., manure, sewage, chemical nitrogen fertilizer, soil organic nitrogen and rainfall) so as to obtain the site source isotopic signatures. Different sources pools and fractionation factors were loaded to a Bayesian isotope mixing model to ensure posterior estimates with less uncertainty. Results showed that the total nitrogen (TN) concentrations in Hexi Reservoir watershed were higher than the Environmental Quality Standards for Surface Water of China (GB 3838-2002), and NO3--N was the dominant form of TN (accounting for 68.63% on average). There are significant spatio-temporal variations in the isotope data (δ15N-NO3- and δ18O-NO3-) and the dominant nitrate sources, which were related to the land use types. Loading the site source isotopic signatures to the Bayesian isotope mixing model effectively improved the accuracy and precision of nitrate source apportionment. Chemical nitrogen fertilizer (NF) was the foremost largest contributor of NO3--N (38.82%), especially for Hexi North Stream (34.19%) and Yangmei Stream (44.39%), while atmospheric deposition (AD) contributed the least to NO3--N (0.47%) of river water in the watershed; soil organic nitrogen (NS) contributed more to NO3--N in the dry season than in the wet season; and manure and sewage (M&S) contributed approximately 30.22% in the whole study period, 53.60% in September 2016 and 41.33% in Hexi South Stream. This research suggests that combination of Spatial Analysis and the Bayesian isotope mixing model with the measured isotopic signatures of potential nitrate sources accurately apportion the nitrate source contributions.

20.
Sci Total Environ ; 590-591: 287-296, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28279533

ABSTRACT

Selecting proper rate equations for the kinetic models is essential to quantify biotransformation processes in the environment. Bayesian model selection method can be used to evaluate the candidate models. However, comparisons of all plausible models can result in high computational cost, while limiting the number of candidate models may lead to biased results. In this work, we developed an integrated Bayesian method to simultaneously perform model selection and parameter estimation by using a generalized rate equation. In the approach, the model hypotheses were represented by discrete parameters and the rate constants were represented by continuous parameters. Then Bayesian inference of the kinetic models was solved by implementing Markov Chain Monte Carlo simulation for parameter estimation with the mixed (i.e., discrete and continuous) priors. The validity of this approach was illustrated through a synthetic case and a nitrogen transformation experimental study. It showed that our method can successfully identify the plausible models and parameters, as well as uncertainties therein. Thus this method can provide a powerful tool to reveal more insightful information for the complex biotransformation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...