Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
Article in Chinese | MEDLINE | ID: mdl-38858116

ABSTRACT

Objective:To summarize the procedures and efficacy of surgical treatment for Andrew stage Ⅰ-Ⅲ juvenile nasopharyngeal angiofibroma(JNA). Methods:A total of 12 patients with JNA who underwent surgery from 2016 to 2021 were enrolled, including 1 case in stage Ⅰ, 3 cases in stage Ⅱ, and 8 cases in stage Ⅲ. JNA was resected by transnasal endoscopic approach alone, or combined with transoral approach or Caldwell-Luc approach was performed. Results:Eleven cases underwent complete resection without recurrence and 1 case had residual tumor. There were no serious complications. The median intraoperative blood loss was 200 mL, and 1 patient received blood transfusion. The median operative time was 110 minutes. Conclusion:JNA in Andrew stage Ⅰ-Ⅲ can be quickly and completely resected by standardized surgical procedures using endoscopy and coblation technology.


Subject(s)
Angiofibroma , Endoscopy , Nasopharyngeal Neoplasms , Humans , Angiofibroma/surgery , Nasopharyngeal Neoplasms/surgery , Male , Endoscopy/methods , Adolescent , Treatment Outcome , Female , Operative Time , Young Adult , Blood Loss, Surgical , Adult
2.
Environ Sci Technol ; 58(22): 9840-9849, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775339

ABSTRACT

The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.


Subject(s)
Iodine , Iron , Iodine/chemistry , Iron/chemistry , Adsorption , Groundwater/chemistry , Minerals/chemistry
3.
Sci Total Environ ; 937: 173482, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38795982

ABSTRACT

Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.


Subject(s)
Europium , Hematopoiesis , Lysosomes , Metal Nanoparticles , Oxides , Animals , Europium/toxicity , Mice , Lysosomes/drug effects , Lysosomes/metabolism , Oxides/toxicity , Hematopoiesis/drug effects , Metal Nanoparticles/toxicity , Spleen/drug effects , Nanoparticles/toxicity
4.
Environ Sci Technol ; 58(23): 10309-10321, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38795035

ABSTRACT

The global practice of reusing sewage sludge in agriculture and its landfill disposal reintroduces environmental contaminants, posing risks to human and ecological health. This study screened sewage sludge from 30 Chinese cities for androgen receptor (AR) disruptors, utilizing a disruptor list from the Toxicology in the 21st Century program (Tox21), and identified 25 agonists and 33 antagonists across diverse use categories. Predominantly, natural products 5α-dihydrotestosterone and thymidine emerged as agonists, whereas the industrial intermediate caprolactam was the principal antagonist. In-house bioassays for identified disruptors displayed good alignment with Tox21 potency data, validating employing Tox21 toxicity data for theoretical toxicity estimations. Potency calculations revealed 5α-dihydrotestosterone and two pharmaceuticals (17ß-trenbolone and testosterone isocaproate) as the most potent AR agonists and three dyes (rhodamine 6G, Victoria blue BO, and gentian violet) as antagonists. Theoretical effect contribution evaluations prioritized 5α-dihydrotestosterone and testosterone isocaproate as high-risk AR agonists and caprolactam, rhodamine 6G, and 8-hydroxyquinoline (as a biocide and a preservative) as key antagonists. Notably, 16 agonists and 20 antagonists were newly reported in the sludge, many exhibiting significant detection frequencies, concentrations, and/or toxicities, demanding future scrutiny. Our study presents an efficient strategy for estimating environmental sample toxicity and identifying key toxicants, thereby supporting the development of appropriate sludge management strategies.


Subject(s)
Receptors, Androgen , Sewage , Sewage/chemistry , Humans , China , Receptors, Androgen/metabolism
5.
Environ Pollut ; 351: 124048, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714230

ABSTRACT

Sulfate-reducing bacteria (SRB) play pivotal roles in the biotransformation of mercury (Hg). However, unrevealed global responses of SRB to Hg have restricted our understanding of details of Hg biotransformation processes. The absence of protein-protein interaction (PPI) network under Hg stimuli has been a bottleneck of proteomic analysis for molecular mechanisms of Hg transformation. This study constructed the first comprehensive PPI network of SRB in response to Hg, encompassing 67 connected nodes, 26 independent nodes, and 121 edges, covering 93% of differentially expressed proteins from both previous studies and this study. The network suggested that proteomic changes of SRB in response to Hg occurred globally, including microbial metabolism in diverse environments, carbon metabolism, nucleic acid metabolism and translation, nucleic acid repair, transport systems, nitrogen metabolism, and methyltransferase activity, partial of which could cover the known knowledge. Antibiotic resistance was the original response revealed by this network, providing insights into of Hg biotransformation mechanisms. This study firstly provided the foundational network for a comprehensive understanding of SRB's responses to Hg, convenient for exploration of potential targets for Hg biotransformation. Furthermore, the network indicated that Hg enhances the metabolic activities and modification pathways of SRB to maintain cellular activities, shedding light on the influences of Hg on the carbon, nitrogen, and sulfur cycles at the cellular level.


Subject(s)
Mercury , Mercury/metabolism , Protein Interaction Maps , Bacterial Proteins/metabolism , Biotransformation , Sulfates/metabolism , Bacteria/metabolism , Proteomics , Sulfur-Reducing Bacteria/metabolism
6.
Anal Chem ; 96(22): 9167-9176, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38761141

ABSTRACT

The detection of virus RNA in wastewater has been established as a valuable method for monitoring Coronavirus disease 2019. Carbon nanomaterials hold potential application in separating virus RNA owing to their effective adsorption and extraction capabilities. However, carbon nanomaterials have limited separability under homogeneous aqueous conditions. Due to the stabilities in their nanostructure, it is a challenge to efficiently immobilize them onto magnetic beads for separation. Here, we develop a porous agarose layered magnetic graphene oxide (GO) nanocomposite that is prepared by agglutinating ferroferric oxide (Fe3O4) beads and GO with agarose into a cohesive whole. With an average porous size of approximately 500 nm, the porous structure enables the unhindered entry of virus RNA, facilitating its interaction with the surface of GO. Upon the application of a magnetic field, the nucleic acid can be separated from the solution within a few minutes, achieving adsorption efficiency and recovery rate exceeding 90% under optimized conditions. The adsorbed nucleic acid can then be preserved against complex sample matrix for 3 days, and quantitatively released for subsequent quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. The developed method was successfully utilized to analyze wastewater samples obtained from a wastewater treatment plant, detecting as few as 10 copies of RNA molecules per sample. The developed aMGO-RT-qPCR provides an efficient approach for monitoring viruses and will contribute to wastewater-based surveillance of community infections.


Subject(s)
Graphite , Nanocomposites , RNA, Viral , Sepharose , Wastewater , Graphite/chemistry , Wastewater/virology , Wastewater/chemistry , RNA, Viral/analysis , RNA, Viral/isolation & purification , Sepharose/chemistry , Nanocomposites/chemistry , Porosity , Adsorption
7.
ACS Environ Au ; 4(3): 162-172, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765061

ABSTRACT

The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ114/110Cd of Ca(NO3)2-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ114/110Cd of the water-soluble fraction varied considerably from -0.88 to -0.27%, similar to those observed in whole rice plant [Δ114/110Cdplant-water ≈ 0 (-0.06 to -0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ114/110Cdplant-water found in field conditions (-0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.

8.
Cancer Commun (Lond) ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734931

ABSTRACT

BACKGROUND: Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape. METHODS: Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort. RESULTS: A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues. CONCLUSIONS: The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.

9.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696308

ABSTRACT

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Subject(s)
Carbon , Soil Pollutants , Soil , Soil/chemistry , Persistent Organic Pollutants , Environmental Monitoring , Arctic Regions , Ecosystem
10.
Environ Sci Technol ; 58(14): 6077-6082, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38556743

ABSTRACT

The Paris Agreement and the Minamata Convention on Mercury are two of the most important environmental conventions being implemented concurrently, with a focus on reducing carbon and mercury emissions, respectively. The relation between mercury and carbon influences the interactions and outcomes of these two conventions. This perspective investigates the link between mercury and CO2, assessing the consequences and exploring the policy implications of this link. We present scientific evidence showing that mercury and CO2 levels are negatively correlated under natural conditions. As a result of this negative correlation, the CO2 level under the current mercury reduction scenario is predicted to be 2.4-10.1 ppm higher than the no action scenario by 2050, equivalent to 1.0-4.8 years of CO2 increase due to human activity. The underlying causations of this negative correlation are complex and need further research. Economic analysis indicates that there is a trade-off between the benefits and costs of mercury reduction actions. As reducing mercury emission may inadvertently undermine efforts to achieve climate goals, we advocate for devising a coordinated implementation strategy for carbon and mercury conventions to maximize synergies and reduce trade-offs.


Subject(s)
Carbon Dioxide , Mercury , Humans , Mercury/analysis , Policy , Climate
11.
Water Res ; 256: 121652, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38657313

ABSTRACT

The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.


Subject(s)
Androgens , Sewage , Water Pollutants, Chemical , Sewage/chemistry , China , Water Pollutants, Chemical/analysis , Endocrine Disruptors , Receptors, Androgen/metabolism
12.
J Environ Manage ; 356: 120432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479282

ABSTRACT

Biodegradation of soil organic matter (SOM), which involves greenhouse gas (GHG) emissions, plays an essential role in the global carbon cycle. Over the past few decades, this has become an important research focus, particularly in natural ecosystems. SOM biodegradation significantly affects contaminants in the environment, such as mercury (Hg) methylation, producing highly toxic methylmercury (MeHg). However, the potential link between GHG production from SOM turnover in contaminated soils and biogeochemical processes involving contaminants remains unclear. In this study, we investigated the dynamics of GHG, MeHg production, and the relationship between biogeochemical processes in soils from two typical Hg mining sites. The two contaminated soils have different pathways, explaining the significant variations in GHG and MeHg production. The divergence of the microbial communities in these two biogeochemical processes is essential. In addition to the microbial role, abiotic factors such as Hg species can significantly affect MeHg production. On the other hand, we found an inverse relationship between CH4 and MeHg, suggesting that carbon emission reduction policies and management could inadvertently increase the MeHg levels. This highlights the need for an eclectic approach to organic carbon sequestration and contaminant containment. These findings suggest that it is difficult to establish a general pattern to describe and explain the SOM degradation and MeHg production in contaminated soils within the specific scenarios. However, this study provides a case study and helpful insights for further understanding the links between environmental risks and carbon turnover in Hg mining areas.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Soil Pollutants , Soil , Ecosystem , Soil Pollutants/analysis , Mercury/analysis , Carbon , Biodegradation, Environmental , Environmental Monitoring
13.
Environ Sci Technol ; 58(13): 5932-5941, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38502530

ABSTRACT

Organoiodine compounds (OICs) are the dominant iodine species in groundwater systems. However, molecular mechanisms underlying the geochemical formation of geogenic OICs-contaminated groundwater remain unclear. Based upon multitarget field monitoring in combination with ultrahigh-resolution molecular characterization of organic components for alluvial-lacustrine aquifers, we identified a total of 939 OICs in groundwater under reducing and circumneutral pH conditions. In comparison to those in water-soluble organic matter (WSOM) in sediments, the OICs in dissolved organic matter (DOM) in groundwater typically contain fewer polycyclic aromatics and polyphenol compounds but more highly unsaturated compounds. Consequently, there were two major sources of geogenic OICs in groundwater: the migration of the OICs from aquifer sediments and abiotic reduction of iodate coupled with DOM iodination under reducing conditions. DOM iodination occurs primarily through the incorporation of reactive iodine that is generated by iodate reduction into highly unsaturated compounds, preferably containing hydrophilic functional groups as binding sites. It leads to elevation of the concentration of the OICs up to 183 µg/L in groundwater. This research provides new insights into the constraints of DOM molecular composition on the mobilization and enrichment of OICs in alluvial-lacustrine aquifers and thus improves our understanding of the genesis of geogenic iodine-contaminated groundwater systems.


Subject(s)
Groundwater , Iodine , Water Pollutants, Chemical , Iodates , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Water , Environmental Monitoring
14.
Environ Sci Technol ; 58(8): 3966-3973, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353415

ABSTRACT

The occurrence of chlorinated derivatives of bisphenol S (Clx-BPS) and BPS was investigated in nine types of paper products (n = 125), including thermal paper, corrugated boxes, mail envelopes, newspapers, flyers, magazines, food contact paper, household paper, and business cards. BPS was found in all paper product samples, while Clx-BPS were mainly found in thermal paper (from below the limit of detection (

Subject(s)
Benzhydryl Compounds , Paper , Humans , Food , Commerce
15.
World Allergy Organ J ; 17(2): 100859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312493

ABSTRACT

Background: Central compartment atopic disease (CCAD) is a subtype of chronic rhinosinusitis (CRS). Research focusing on the endoscopic sinus surgery (ESS) outcomes of CCAD is limited. This study aimed to evaluate the outcomes of ESS in CCAD and compared to 2 following subtypes: chronic rhinosinusitis with nasal polyps (CRSwNP) and concomitant polypoid disease in the central compartment (CRSwNP/CC) and CRSwNP not otherwise specified (CRSwNP NOS). Methods: This case-control study enrolled patients with bilateral CRSwNP who underwent ESS and had at least 1 year of follow-up. Patients were classified into CCAD, CRSwNP/CC, and CRSwNP NOS. The demographic data, preoperative disease severity, and surgery outcomes, including CRS control status, endoscopic score, and symptom scores at 1 year postoperatively, were collected. We defined well controlled and partly controlled as appropriate disease control. Results: This study screened 259 patients and enrolled 138 patients with complete medical records and 1-year follow-up (CCAD N = 51, CRSwNP/CC N = 55, CRSwNP NOS N = 32). Among them, appropriate disease control was achieved in 84.3% of patients (43/51) in the CCAD group, 69.1% (38/55) in the CRSwNP/CC group, and 93.7% (30/32) in the CRSwNP NOS group (P = 0.029). Then we performed post-hoc analysis using appropriate disease control and uncontrolled. There was a significant difference between CRSwNP/CC and CRSwNP NOS (P = 0.007), but no significant difference compared CCAD group to CRSwNP/CC group (P = 0.065) and CRSwNP NOS group (P = 0.199). There were significant differences in endoscopic E-score among groups (P < 0.001). In post-hoc analysis, we found that CRSwNP/CC (Median [IQR], 33.32 [42.14]) had a significantly worse E-score than CCAD (8.33 [16.67]) and CRSwNP NOS (4.17 [8.30]). Also, postoperative olfactory visual analog scale (VAS) scores significantly differed among groups (P = 0.043). However, post-hoc analysis showed no difference between any 2 groups. There were no differences in postoperative VAS scores of obstruction (P = 0.159), rhinorrhea (P = 0.398), and headache/facial pain (P = 0.092). Conclusion: Most CCAD patients had good surgical outcomes 1 year after surgery. Meanwhile, the CRSwNP/CC group had the fewest patients under appropriate disease control.

16.
J Hazard Mater ; 466: 133640, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309162

ABSTRACT

The environmental fate of arsenic (As) relies substantially on its speciation, which occurs frequently coupled to the redox transformation of manganese. While trivalent manganese (Mn(III)), which is known for its high reactivity, is believed to play a role in As mobilization by iron (oxyhydr)oxides in dynamic aquifers, the exact roles and underlying mechanisms are still poorly understood. Using increasingly complex batch experiments that mimick As-affected aquifer conditions in combination with time-resolved characterization, we demonstrate that Mn(III)-NOM complexes play a crucial role in the manganese-mediated immobilization of As(III) by ferrihydrite and goethite. Under anaerobic condition, Mn(III)-fulvic acid (FA) rapidly oxidized 31.8% of aqueous As(III) and bound both As(III) and As(V). Furthermore, Mn(III)-FA exerted significantly different effects on the adsorption of As by ferrihydrite and goethite. Mn(III)-FA increased the adsorption of As by 6-16% due to the higher affinity of oxidation-produced As(V) for ferrihydrite under circumneutral conditions. In contrast, As adsorption by crystalline goethite was eventually inhibited due to the competitive effect of Mn(III)-FA. To summarize, our results reveal that Mn(III)-NOM complexes play dual roles in As retention by iron oxides, depending on the their crystallization. This highlights the importance of Mn(III) for the fate of As particularly in redox fluctuating groundwater environments.

17.
Article in English | MEDLINE | ID: mdl-38403085

ABSTRACT

BACKGROUND: The function of kallistatin in airway inflammation, particularly chronic rhinosinusitis with nasal polyps (CRSwNP), has not been elucidated. OBJECTIVE: We sought to investigate the role of kallistatin in airway inflammation. METHODS: Kallistatin and proinflammatory cytokine expression levels were detected in nasal polyps. For the in vivo studies, we constructed the kallistatin-overexpressing transgenic mice to elucidate the role of kallistatin in airway inflammation. Furthermore, the levels of plasma IgE and proinflammatory cytokines in the airways were evaluated in the kallistatin-/- rat in vivo model under a type 2 inflammatory background. Finally, the Notch signaling pathway was explored to understand the role of kallistatin in CRSwNP. RESULTS: We showed that the expression of kallistatin was significantly higher in nasal polyps than in the normal nasal mucosa and correlated with IL-4 expression. We also discovered that the nasal mucosa of kallistatin-overexpressing transgenic mice expressed higher levels of IL-4 expression, associating to TH2-type inflammation. Interestingly, we observed lower IL-4 levels in the nasal mucosa and lower total plasma IgE of the kallistatin-/- group treated with house dust mite allergen compared with the wild-type house dust mite group. Finally, we observed a significant increase in the expression of Jagged2 in the nasal epithelium cells transduced with adenovirus-kallistatin. This heightened expression correlated with increased secretion of IL-4, attributed to the augmented population of CD4+CD45+Notch1+ T cells. These findings collectively may contribute to the induction of TH2-type inflammation. CONCLUSIONS: Kallistatin was demonstrated to be involved in the CRSwNP pathogenesis by enhancing the TH2 inflammation, which was found to be associated with more expression of IL-4, potentially facilitated through Jagged2-Notch1 signaling in CD4+ T cells.

18.
J Hazard Mater ; 465: 133368, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38163408

ABSTRACT

Urban groundwater, serving as a critical reservoir for potable water, faces susceptibility to contamination from discrete sources such as hospital wastewater. This study investigates the distribution and plausible origins of antibiotics and antibiotic resistance genes (ARGs) in urban groundwater, drawing comparisons between areas proximal to hospitals and non-hospital areas. Ofloxacin and oxytetracycline emerged as the prevalent antibiotics across all samples, with a discernibly richer array of antibiotic types observed in groundwater sourced from hospital-adjacent regions. Employing a suite of multi-indicator tracers encompassing indicator drugs, Enterococci, ammonia, and Cl/Br mass ratio, discernible pollution from hospital or domestic sewage leakage was identified in specific wells, correlating with an escalating trajectory in antibiotic contamination. Redundancy analysis underscored temperature and dissolved organic carbon as principal environmental factors influencing antibiotics distribution in groundwater. Network analysis elucidated the facilitating role of mobile genetic elements, such as int1 and tnpA-02 in propagating ARGs. Furthermore, ARGs abundance exhibited positive correlations with temperature, pH and metallic constituents (e.g., Cu, Pb, Mn and Fe) (p < 0.05). Notably, no conspicuous correlation manifested between antibiotics and ARGs. These findings accentuate the imperative of recognizing the peril posed by antibiotic contamination in groundwater proximal to hospitals and advocate for the formulation of robust prevention and control strategies to mitigate the dissemination of antibiotics and ARGs.


Subject(s)
Anti-Bacterial Agents , Groundwater , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Hospitals, Urban
19.
Environ Sci Technol ; 58(4): 1934-1943, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38180751

ABSTRACT

Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.


Subject(s)
Arsenic , Arsenites , Nostoc , Arsenites/metabolism , S-Adenosylmethionine/metabolism , Antimony , Arsenic/chemistry , Nostoc/metabolism , Ecosystem , Phylogeny , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism
20.
Water Res ; 251: 121117, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38219691

ABSTRACT

Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Iron/analysis , Minerals , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...