Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 801: 149692, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34428650

ABSTRACT

Ebullition has been shown to be an important pathway for methane (CH4) emissions from inland waters. However, the CH4 fluxes and their magnitudes in thermokarst lakes remain unclear due to limited research data, especially on the Tibetan Plateau (TP). The magnitude and regulation of two CH4 pathways, ebullition and diffusion, were investigated in 32 thermokarst lakes on the TP during the summer of 2020. CH4 emissions from thermokarst lakes on the TP showed significant spatiotemporal heterogeneity. Diffusion fluxes in lakes averaged 2.6 mmol m-2 d-1 (ranging from 0.003 to 48.4 mmol m-2 d-1), and ebullition fluxes in lakes averaged 6.6 mmol CH4 m-2 d-1 (ranging from 0.002 to 140.0 mmol m-2 d-1). Together, these ebullition fluxes contributed 66.1 ± 24.9% (ranging 5.4 to 100.0%) to the total (diffusion + ebullition) CH4 emissions, indicating the importance of ebullition as a major CH4 transport mechanism on the TP. In general, thermokarst lakes with higher CH4 diffusion fluxes and ebullition fluxes occurred in alpine meadows (2.5 ± 5.3 mmol m-2 d-1; 8.2 ± 20.6 mmol m-2 d-1), followed by alpine steppes (0.6 ± 5.3 mmol m-2 d-1; 0.7 ± 10.8 mmol m-2 d-1) and desert steppes (0.2 ± 0.2 mmol m-2 d-1; 0.6 ± 0.8 mmol m-2 d-1). The organic matter contents in water and sediment were found to be important factors influencing the seasonal variations in CH4 diffusion fluxes. However, the ebullition CH4 fluxes did not show a clear seasonal variation pattern. Our findings highlight the importance of considering the large spatiotemporal variations in ebullition CH4 fluxes to improve the accuracy of large-scale estimations of CH4 fluxes in thermokarst lakes on the TP. Greater insight into these aspects will increase the understanding of CH4 dynamics in thermokarst lakes on the TP, which is essential for forecasting and climate impact assessments and to better constrain feedback to climate warming.


Subject(s)
Lakes , Methane , Methane/analysis , Seasons , Tibet
2.
Sci Total Environ ; 661: 630-644, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30682613

ABSTRACT

Stable isotopic tracing has proven to be a useful tool for assessing surface water source dynamics and hydrological connectivity in permafrost regions. This study has investigated the contribution of precipitation to water within the active layer at three long-term observation sites, including Fenghuoshan (FHS), Hoh Xil (KKXL) and Wudaoliang (WDL), by using isotopic tracer technique and two-component mixing model. The results showed that precipitation was the predominant source for water within the active layer, permafrost and ground ice near permafrost table at the three sites. Precipitation in August was the predominant source for water within the active layer at FHS, and precipitation in September was the main source at KKXL and WDL. The variation of isotopic values at different levels indicated that the water sources within the active layer could vary as the depth increases. The evaporation fractionation of water within the active layer at WDL was noticeable at depths of 0-50 cm, and the evaporation intensity decrease gradually from late June to late September. The relationship of isotopic tracing values between precipitation and water within the active layer at depths of 0-50 cm becomes more significant as the amount of the recently-occurring precipitation increases. Moreover, the relatively higher d-excess in precipitation indicates that local recycled moisture has greater contribution to precipitation. The differences of d-excess in most water within the active layer, permafrost and ground ice near permafrost table revealed that there were isotopic fractionation when precipitation supplying to above-mentioned three water bodies. The precipitation event amounted to 8.1 mm at KKXL can exert 49% ±â€¯7.1% and 30.8% ±â€¯3.6% contribution to water within the active layer at depths of 0-10 cm and 10-20 cm, respectively. While the long-period contribution cannot be identified because of the impact of evaporation. The results would provide new insights into the contribution of precipitation to water within the active layer on the QTP, which is also helpful to improve process-based hydrological models in the permafrost regions.

3.
Sci Rep ; 8(1): 3656, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483565

ABSTRACT

There are several publications related to the soil organic carbon (SOC) on the Qinghai-Tibetan Plateau (QTP). However, most of these reports were from different parts of the plateau with various sampling depth. Here, we present the results from a systematic sampling and analysis of 200 soil pits. Most of the pits were deeper than 2 m from an east-west transect across the plateau. The SOC and total nitrogen (TN) pools of the 148 × 104 km2, the area of the permafrost zone, for the upper 2 m soils calculated from the vegetation map were estimated to be 17.07 Pg (interquartile range: 11.34-25.33 Pg) and 1.72 Pg (interquartile range: 1.08-2.06 Pg), respectively. We also predicted the distribution of land cover types in 2050 and 2070 using decision tree rules and climate scenarios, and then predicted SOC and TN pools of this region. The results suggested that the SOC and TN pools will decrease in the future. The results not only contribute to the carbon and nitrogen storage and stocks in the permafrost regions as a whole but most importantly, to our knowledge of the possible changes of C and N storage on the QTP in the future.

4.
PLoS One ; 12(1): e0169732, 2017.
Article in English | MEDLINE | ID: mdl-28068392

ABSTRACT

The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the environmental factors (including permafrost) related to the underlying surface conditions.


Subject(s)
Altitude , Ecosystem , Environmental Monitoring , Permafrost , Algorithms , China , Environment , Geography , Models, Theoretical
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 471-7, 2016 Feb.
Article in Chinese | MEDLINE | ID: mdl-27209752

ABSTRACT

Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming. Meanwhile NDVI dataset was one of the most useful tools to monitor the vegetation activity with high spatial and temporal resolution, which is a normalized transform of the near-infrared radiation (NIR) to red reflectance ratio. Therefore, an extended GIMMS NDVI dataset from 1982-2006 to 1982-2014 was presented using a unary linear regression by MODIS dataset from 2000 to 2014 in QTP. Compared with previous researches, the accuracy of the extended NDVI dataset was improved again with consideration the residuals derived from scale transformation. So the model of extend NDVI dataset could be a new method to integrate different NDVI products. With the extended NDVI dataset, we found that in growing season there was a statistically significant increase (0.000 4 yr⁻¹, r² = 0.585 9, p < 0.001) in QTP from 1982 to 2014. During the study pe- riod, the trends of NDVI were significantly increased in spring (0.000 5 yr⁻¹, r² = 0.295 4, p = 0.001), summer (0.000 3 yr⁻¹, r² = 0.105 3, p = 0.065) and autumn respectively (0.000 6 yr⁻¹, r² = 0.436 7, p < 0.001). Due to the increased vegeta- tion activity in Qinghai-Tibet Plateau from 1982 to 2014, the magnitude of carbon sink was accumulated in this region also at this same period. Then the data of temperature and precipitation was used to explore the reason of vegetation changed. Although the trends of them are both increased, the correlation between NDVI and temperature is higher than precipitation in vegetation grow- ing season, spring, summer and autumn. Furthermore, there is significant spatial heterogeneity of the changing trends for ND- VI, temperature and precipitation at Qinghai-Tibet Plateau scale.


Subject(s)
Plants , Spatio-Temporal Analysis , Spectrum Analysis , Environmental Monitoring , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...