Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 665: 41-59, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38513407

ABSTRACT

In the work, Bi2WO6/C-TiO2 photocatalyst was successfully synthesized for the first time by loading narrow bandgap semiconductor Bi2WO6 on MOF-derived carboxyl modified TiO2. The phase structure, morphology, photoelectric properties, surface chemical states and photocatalytic performance of the prepared photocatalysts were systematically investigated using various characterization tools. The degradation efficiency of oxytetracycline by 6BT Z-scheme heterojunction photocatalyst under visible light could reach 93.6 % within 100 min, which was related to the high light harvesting and effective separation and transfer of photo-generated carriers. Furthermore, the effects of various environmental factors in actual wastewater were further investigated, and the results showed that 6BT exhibited good adaptability, durability and resistance to interference. Unlike most works, the degradation system with a different single active species were designed and constructed based on their formation mechanism. In addition, for the first time, a positive study was conducted on the priority attack sites, intermediate products, and degradation pathways for the photocatalytic degradation of oxytetracycline by a single active species through HPLC-MS and Fukui index calculations. The toxicity changes of intermediate products produced in three different single active species oxidation systems were evaluated using toxicity assessment software tools (T.E.S.T.), Escherichia coli growth experiments, and wheat growth experiments. Among them, the intermediate products formed through O2- oxidation had the lowest toxicity and the main active sites it attacked were the 20C, 38O, 18C, 41O, and 55O atoms with high f+ values in the oxytetracycline molecular structure. This work provided the insight into the role of each active species in the degradation of antibiotics and offered new ideas for the design and synthesis of efficient and eco-friendly photocatalysts.


Subject(s)
Oxytetracycline , Oxytetracycline/toxicity , Anti-Bacterial Agents/pharmacology , Escherichia coli , Light , Liquid Chromatography-Mass Spectrometry
2.
J Colloid Interface Sci ; 643: 47-61, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37044013

ABSTRACT

Exfoliating bulk graphite phase carbon nitride (g-C3N4) into 2D nanosheets is considered to be an effective method to enhance its photocatalytic activity. However, optical absorption capacity of the exfoliated g-C3N4 nanosheets are lower than that of the original bulk g-C3N4 due to the quantum size effect. Here, the ultrathin graphite phase carbon nitride nanosheets containing both carbon vacancy and cyano group (UCNS580) were prepared by two-step calcination in air with the assistance of KOH. The formation and position of carbon vacancy and cyano group were first investigated and determined. The simultaneous introduction of carbon vacancy and cyano group not only improved light absorption range and intensity of g-C3N4 nanosheets, but also more importantly constructed a fast transfer channel for photogenerated electrons, further enhancing the separation efficiency and migration ability of photogenerated carriers. The cyano group as the accumulation center of photogenerated electrons and the oxygen adsorption center increased the proportion of one-step two-electrons reaction path to efficiently generate H2O2. As a result, UCNS580 exhibited highly boosted H2O2 generation activity, its H2O2 production yield for 6 h reached 939 µmol/L and the formation rate was up to 4167 µM h-1 g-1, which was in priority in the reported literature under the same conditions.

3.
J Colloid Interface Sci ; 628(Pt A): 259-272, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35932665

ABSTRACT

The photocatalytic production of H2O2 by graphite-phase carbon nitride (g-C3N4) using water and oxygen is a promising and sustainable method. Nevertheless, the yield of H2O2 produced by the pristine g-C3N4 is still far from satisfactory owing to limited optical absorption, rapid photogenerated electron-hole recombination and poor surface electron migration. Therefore, p-P1CN/CQDs25 was designed and synthesized by doping phosphorus (P) and loading carbon quantum dots (CQDs) to modify porous g-C3N4 (p-CN) via a facile method. Herein, P acted as an electron transfer bridge to induce electrons into CQDs, while CQDs acted as an electron trapping material to capture and stabilize photogenerated electrons. Moreover, CQDs could enhance their optical absorption due to its unique optical properties. Notably, p-P1CN/CQDs25 presented highly boosted H2O2 generation activity, its H2O2 production yield for 5 h was up to 494 µM/L and the formation rate constant Kf in the first hour was 238 µM h-1 without adding sacrificial agents and without bubbling oxygen under visible light, which took precedence among the reported results under the same conditions. It should be noted that the composite p-P1CN/CQDs25 also possessed low H2O2 decomposition behavior based on the effect of CQDs stabilizing electrons. In addition, the possible mechanism of photocatalytic H2O2 generation for p-P1CN/CQDs25 was also proposed. Our research provided a new idea for the design of novel photocatalysts to efficient generation of H2O2.

SELECTION OF CITATIONS
SEARCH DETAIL
...