Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
Article in English | MEDLINE | ID: mdl-38804044

ABSTRACT

Epigenetic modifications play an important role in cellular senescence, and enhancer of zeste homolog 2 (EZH2) is a key methyltransferase involved in epigenetic remodeling in multiple myeloma (MM) cells. We have previously demonstrated that GSK126, a specific EZH2 inhibitor, exhibits anti-MM therapeutic efficacy and safety in vivo and in vitro; however, its specific mechanism remains unclear. This study shows that GSK126 induces cellular senescence in MM, which is characterized by the accumulation of senescence-associated heterochromatin foci (SAHF) and p21, and increased senescence-associated ß galactosidase activity. Furthermore, EZH2 is inhibited in ribonucleotide reductase regulatory subunit M2 (RRM2) overexpression OCI-MY5 and RPMI-8226 cells. RRM2 overexpression inhibits the methyltransferase function of EZH2 and promotes its degradation through the ubiquitin-proteasome pathway, thereby inducing cellular senescence. In this senescence model, Lamin B1, a key component of the nuclear envelope and a marker of senescence, does not decrease but instead undergoes aberrant accumulation. Meanwhile, phosphorylation of extracellular signal-regulated protein kinase (ERK1/2) is significantly increased. The inhibition of ERK1/2 phosphorylation in turn partially restores Lamin B1 level and alleviates senescence. These findings suggest that EZH2 inhibition increases Lamin B1 level and induces senescence by promoting ERK1/2 phosphorylation. These data indicate that EZH2 plays an important role in MM cellular senescence and provide insights into the relationships among Lamin B1, p-ERK1/2, and cellular senescence.

3.
Arch Biochem Biophys ; 754: 109929, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367794

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL. DHCE showed potent anti-lymphoma efficacy and synergistic effects with doxorubicin. DHCE triggered DLBCL cell apoptosis and G0/G1-phase blockade, thereby hindering angiogenesis. DHCE inhibited B-cell receptor cascade signalling and Jun B and p65 nuclear translocation, thereby suppressing pro-tumourigenic signalling. Finally, DHCE exerted lower toxicity than CE, which showed severe hepatic, renal, and reproductive toxicity in vivo. Our findings support further investigation of the clinical efficacy of DHCE against DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Pentacyclic Triterpenes , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/metabolism , Angiogenesis , Signal Transduction , Apoptosis , Lymphoma, Large B-Cell, Diffuse/metabolism , Cell Line, Tumor , Cell Proliferation
4.
Bioorg Med Chem Lett ; 98: 129590, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38092072

ABSTRACT

Natural product cantharidin can inhibit multiple myeloma cell growth in vitro, while serious adverse effects limited its clinical application. Therefore, the structural modification of cantharidin is needed. Herein, inspired by the structural similarity of the aliphatic endocyclic moiety in cantharidin and TRIP13 inhibitor DCZ0415, we designed and synthesized DCZ5418 and its nineteen derivatives. The molecular docking study indicated that DCZ5418 had a similar binding mode to TRIP13 protein as DCZ0415 while with a stronger docking score. Moreover, the bioassay studies of the MM-cells viability inhibition, TRIP13 protein binding affinity and enzyme inhibiting activity showed that DCZ5418 had good anti-MM activity in vitro and definite interaction with TRIP13 protein. The acute toxicity test of DCZ5418 showed less toxicity in vivo than cantharidin. Furthermore, DCZ5418 showed good anti-MM effects in vivo with a lower dose administration than DCZ0415 (15 mg/kg vs 25 mg/kg) on the tumor xenograft models. Thus, we obtained a new TRIP13 inhibitor DCZ5418 with improved safety and good activity in vivo, which provides a new example of lead optimization by using the structural fragments of natural products.


Subject(s)
Cantharidin , Multiple Myeloma , Humans , ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , Cantharidin/pharmacology , Cantharidin/therapeutic use , Cantharidin/chemistry , Cell Cycle Proteins , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology
5.
Haematologica ; 109(4): 1206-1219, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37767568

ABSTRACT

Multiple myeloma (MM) remains incurable due to drug resistance. Ribosomal protein S3 (RPS3) has been identified as a non-Rel subunit of NF-κB. However, the detailed biological roles of RPS3 remain unclear. Here, we report for the first time that RPS3 is necessary for MM survival and drug resistance. RPS3 was highly expressed in MM, and knockout of RPS3 in MM inhibited cell growth and induced cell apoptosis both in vitro and in vivo. Overexpression of RPS3 mediated the proteasome inhibitor resistance of MM and shortened the survival of MM tumor-bearing animals. Moreover, our present study found an interaction between RPS3 and the thyroid hormone receptor interactor 13 (TRIP13), an oncogene related to MM tumorigenesis and drug resistance. We demonstrated that the phosphorylation of RPS3 was mediated by TRIP13 via PKCδ, which played an important role in activating the canonical NF-κB signaling and inducing cell survival and drug resistance in MM. Notably, the inhibition of NF-κB signaling by the small-molecule inhibitor targeting TRIP13, DCZ0415, was capable of triggering synergistic cytotoxicity when combined with bortezomib in drug-resistant MM. This study identifies RPS3 as a novel biomarker and therapeutic target in MM.


Subject(s)
Multiple Myeloma , NF-kappa B , Animals , NF-kappa B/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Ribosomal Proteins/genetics , Bortezomib/pharmacology , Bortezomib/therapeutic use , Drug Resistance , Cell Line, Tumor
6.
Int Immunopharmacol ; 127: 111446, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38157697

ABSTRACT

Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression. DCZ0825 inhibits the activity and proliferation of MM cells causing no significant toxicity to normal cells. Using flow cytometry, this study found that DCZ0825 induced caspase-dependent apoptosis in MM cells and arrested the cell cycle in the G2/M phase by down-regulating CyclinB1, CDK1 and CDC25. Moreover, DCZ0825 up-regulated IRF3 and IRF7 to increase IFN-γ, promoting M2 macrophages to transform into M1 macrophages, releasing the immunosuppression of CD4T cells and stimulated M1 macrophages and Th1 cells to secrete more INF-γ to form immune killing effect on MM cells. Treatment with DCZ0825 resulted in an increased proportion of positive regulatory cells such as CD4T, memory T cells, CD8T, and NK cells, with downregulation of the proportion of negative regulatory cells such as Treg cells and MDSCs. In conclusion, DCZ0825 is a novel compound with both antitumor and immunomodulatory activity.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Neoplasm Recurrence, Local , Macrophages , Th1 Cells , Immunomodulation
7.
J Transl Med ; 21(1): 858, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012658

ABSTRACT

BACKGROUND: Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application. In this study, we synthesized a series of derivatives of NCTD to address this. Among these compounds, DCZ5417 demonstrated the greatest anti-MM effect and fewest side effects. Its anti-myeloma effects and  the mechanism were further tested. METHODS: Molecular docking, pull-down, surface plasmon resonance-binding, cellular thermal shift, and ATPase assays were used to study the targets of DCZ5417. Bioinformatic, genetic, and pharmacological approaches were used to elucidate the mechanisms associated with DCZ5417 activity. RESULTS: We confirmed a highly potent interaction between DCZ5417 and TRIP13. DCZ5417 inhibited the ATPase activity of TRIP13, and its anti-MM activity was found to depend on TRIP13. A mechanistic study verified that DCZ5417 suppressed cell proliferation by targeting TRIP13, disturbing the TRIP13/YWHAE complex and inhibiting the ERK/MAPK signaling axis. DCZ5417 also showed a combined lethal effect with traditional anti-MM drugs. Furthermore, the tumor growth-inhibitory effect of DCZ5417 was demonstrated using in vivo tumor xenograft models. CONCLUSIONS: DCZ5417 suppresses MM progression in vitro, in vivo, and in primary cells from drug-resistant patients, affecting cell proliferation by targeting TRIP13, destroying the TRIP13/YWHAE complex, and inhibiting ERK/MAPK signaling. These results imply a new and effective therapeutic strategy for MM treatment.


Subject(s)
Multiple Myeloma , Humans , 14-3-3 Proteins/metabolism , Apoptosis , ATPases Associated with Diverse Cellular Activities/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Molecular Docking Simulation , Multiple Myeloma/metabolism , Signal Transduction , Animals
8.
Cancer Med ; 12(23): 21321-21334, 2023 12.
Article in English | MEDLINE | ID: mdl-37942576

ABSTRACT

BACKGROUND: Thyroid hormone receptor interacting protein 13 (Trip13) is an AAA-ATPase that regulates the assembly or disassembly protein complexes and mediates Double-strand breaks (DSBs) repair. Overexpression of Trip13 has been detected in many cancers and is associated with myeloma progression, disease relapse and poor prognosis inmultiple myeloma (MM). METHODS: We have identified a small molecular, TI17, through a parallel compound-centric approach, which specifically targets Trip13. To identify whether TI17 targeted Trip13, pull-down and nuclear magnetic resonance spectroscopy (NMR) assays were performed. Cell counting kit-8, clone formation, apoptosis and cell cycle assays were applied to investigate the effects of TI17. We also utilized a mouse model to investigate the effects of TI17 in vivo. RESULTS: TI17 effectively inhibited the proliferation of MM cells, and induced the cycle arrest and apoptosis of MM cells. Furthermore, treatment with TI17 abrogates tumor growth and has no apparent side effects in mouse xenograft models. TI17 specifically impaired Trip13 function of DSBs repair and enhanced DNA damage responses in MM. Combining with melphalan or HDAC inhibitor panobinostat triggers synergistic anti-MM effect. CONCLUSIONS: Our study suggests that TI17 could be acted as a specific inhibitor of Trip13 and supports a preclinical proof of concept for therapeutic targeting of Trip13 in MM.


Subject(s)
Multiple Myeloma , Humans , Animals , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , DNA Breaks, Double-Stranded , Neoplasm Recurrence, Local , Cell Cycle Proteins/metabolism , DNA Repair , Cell Cycle
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1884-1891, 2023 12 25.
Article in English | MEDLINE | ID: mdl-38009004

ABSTRACT

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/metabolism , Bortezomib/therapeutic use , Multiple Myeloma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Apoptosis , Cell Proliferation , Proteasome Endopeptidase Complex/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
10.
Int Immunopharmacol ; 125(Pt A): 111139, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913572

ABSTRACT

The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention. In this study, we employed the CCK8 assay to reveal that DCZ0358 inhibited proliferation in a dependent manner of time and dosage of DLBCL cells. Moreover, flowcytometry and western blot results showed that DCZ0358 downregulated the expression of CDK4, CDK6 and CyclinD1 to block cell cycle progression in G0/G1 phase. Furthermore, DCZ0358 enhanced mitochondrial membrane potential depolarization, promoted mitochondrial permeability transport pore openness, increased cytoplastic Ca2+ levels and decreased intracellular adenosine triphosphate production, which led to mitochondrial dysfunction. In particular, DCZ0358 treatment triggered cell apoptosis and elevated intracellular reactive oxygen species (ROS) levels, which subsequently mediated JNK pathway activation. Further research indicated the pre-treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358. Most importantly, DCZ0358 exhibited synergistic anti-tumor effects when combined with etoposide, a common clinical anti-DLBCL drug, both in vitro and certainly in vivo. Above results demonstrated anti-tumor molecular mechanism of DCZ0358 in DLBCL cells and highlighted the ROS/JNK/DNA damage pathway as a potential target in therapies, which have implications for the development of more effective clinical treatments for DLBCL.


Subject(s)
Berberine , Lymphoma, Large B-Cell, Diffuse , Humans , Apoptosis , Berberine/pharmacology , Cell Line, Tumor , JNK Mitogen-Activated Protein Kinases/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , MAP Kinase Signaling System , Oxidative Stress , Reactive Oxygen Species/metabolism
11.
Arch Biochem Biophys ; 747: 109771, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37776936

ABSTRACT

Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear. Osalmid inhibits the translocation of RRM2 to the nucleus and stimulates autophagosome synthesis but inhibits subsequent autophagosome-lysosome fusion. We confirm that RRM2 binds to receptor-interacting protein kinase 3 (RIPK3) and reduces RIPK3, inhibiting autophagosome-lysosome fusion. Interestingly, the combination of osalmid and bafilomycin A1 (an autophagy inhibitor) depletes RIPK3 and aggravates p62 and autophagosome accumulation, leading to autophagic cell death. Combination therapy demonstrates synergistic cytotoxicity both in vitro and in vivo. Therefore, we propose that combining osalmid and bafilomycin A1(BafA1) may have clinical benefits against MM.

13.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 215-224, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36815376

ABSTRACT

Multiple myeloma (MM), the second most common haematological malignancy, is currently incurable because patients often develop multiple drug resistance and experience subsequent relapse of the disease. This study aims to identify a potential therapeutic agent that can counter bortezomib (BTZ) resistance in MM. DCZ0358, a novel alkaloid compound, is found to exert potent cytotoxic effects against BTZ-resistant MM cells in vivo and in vitro. The anti-myeloma activity of DCZ0358 is associated with inhibition of cell proliferation, promotion of cell apoptosis via caspase-mediated apoptotic pathways, and induction of G0/G1 phase arrest via downregulation of cyclin D1, CDK4, and CDK6. Further investigation of the molecular mechanism shows that DCZ0358 suppresses the JAK2/STAT3 signaling pathway. In conclusion, DCZ0358 can successfully counter BTZ resistance in MM cells. This study provides evidence that warrants future preclinical assessments of DCZ0358 as a therapeutic agent against BTZ resistance in MM.


Subject(s)
Alkaloids , Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/metabolism , Bortezomib/therapeutic use , Multiple Myeloma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Alkaloids/pharmacology , Cell Line, Tumor , Apoptosis , Cell Proliferation , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism
14.
J Biomed Sci ; 29(1): 32, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35546402

ABSTRACT

BACKGROUND: Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model. In addition, we assessed the clinical activity and safety of HDS in patients with MM. METHODS: We applied bioinformatic, genetic, and pharmacological approaches to demonstrate that HDS was an RNR inhibitor that directly bound to RNR subunit M2 (RRM2). The activity of HDS alone or in synergy with standard treatments was evaluated in vitro and in vivo. We also initiated a phase I clinical trial of single-agent HDS in MM patients (ClinicalTrials.gov: NCT03670173) to assess safety and efficacy. RESULTS: HDS inhibited the activity of RNR by directly targeting RRM2. HDS decreased the RNR-mediated dNTP synthesis and concomitantly inhibited DNA damage repair, resulting in the accumulation of endogenous unrepaired DNA double-strand breaks (DSBs), thus inhibiting MM cell proliferation and inducing apoptosis. Moreover, HDS overcame the protective effects of IL-6, IGF-1 and bone marrow stromal cells (BMSCs) on MM cells. HDS prolonged survival in a MM xenograft model and induced synergistic anti-myeloma activity in combination with melphalan and bortezomib. HDS also showed a favorable safety profile and demonstrated clinical activity against MM. CONCLUSIONS: Our study provides a rationale for the clinical evaluation of HDS as an anti-myeloma agent, either alone or in combination with standard treatments for MM. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03670173, Registered 12 September 2018.


Subject(s)
Multiple Myeloma , Ribonucleotide Reductases , DNA Breaks, Double-Stranded , DNA Damage , DNA Repair , DNA Replication , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism
15.
Neoplasia ; 24(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34890905

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is a clinical and genetically heterogeneous lymphoid malignancy. Although R-CHOP (rituximab plus cyclophosphamide, vincristine, doxorubicin, and prednisone) treatment can improve the survival rate of patients with DLBCL, more than 30% of patients exhibit treatment failure, relapse, or refractory disease. Therefore, novel drugs or targeted therapies are needed to improve the survival of patients with DLBCL. The compound DCZ0014 is a novel chemical similar to berberine. In this study, we found that DCZ0014 significantly inhibited the proliferation and activity of DLBCL cells, and induced cell apoptosis. Following treatment with DCZ0014, DLBCL cells accumulated in G0/G1-phase of the cell cycle and showed decreased mitochondrial membrane potential. Additionally, DCZ0014 inhibited DNA synthesis, enhanced DNA damage in DLBCL cells, as well as inhibited Lyn/Syk in B cell receptor signaling pathway. Further experiments demonstrated that DCZ0014 did not significantly affect peripheral blood mononuclear cells. Tumor xenograft model showed that DCZ0014 not only inhibited tumor growth but also extended the survival time of mice. Thus, DCZ0014 showed potential for clinical application in the treatment of patients with DLBCL.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphoma, Large B-Cell, Diffuse/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , DNA Replication , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Xenograft Model Antitumor Assays
16.
Am J Transl Res ; 13(10): 11439-11449, 2021.
Article in English | MEDLINE | ID: mdl-34786070

ABSTRACT

Multiple myeloma (MM) is a malignant disease characterized by abnormal proliferation of clonal plasma cells. Based on the organic drug osalmid, the novel small molecule compound DCZ0858 was designed and synthesized for treating MM. DCZ0858 inhibited the proliferation and activity of MM cells and reduced colony formation. It also promoted the apoptosis of primary cells from patients with MM and cultured MM cell lines but had little effect on peripheral blood mononuclear cells in healthy people. Simultaneously, DCZ0858 activated caspase family proteins, blocked MM cells in G0/G1 phase, and reduced the expression of related cyclins CDK4/6 and CyclinD1. Moreover, DCZ0858 overcame the protective effect of the bone marrow microenvironment and effectively inhibited the activity of mTORC1 and mTORC2. Further, xenograft model experiments in mice showed that DCZ0858 significantly inhibited the proliferation and growth of tumors, with low drug toxicity. These results indicate that DCZ0858 has marked anti-MM activity and little effect on normal cells and tissues, making it a new candidate clinical drug for the treatment of MM.

17.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1505-1515, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34558606

ABSTRACT

Multiple myeloma (MM) is an incurable disease characterized by malignant plasma cell clonal expansion in the bone marrow; therefore, inhibiting the proliferation of plasma cells is an important approach to overcome the progression of MM. Quercetin (Que) is a promising flavonoid with broad-spectrum anti-tumor activity against various cancers, including MM; however, the underlying mechanism is not yet understood. The present study aimed to reveal the gene expression profile of Que-treated MM cells and clarify its potential mechanism. The 30% inhibitory concentration (IC30) of Que against MM cells was calculated, and the proliferation rate was significantly reduced after Que treatment. Next, 495 dysregulated genes were identified via RNA sequencing in Que-treated MM cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the dysregulated genes were enriched in various apoptosis-related GO terms and amino acid metabolism-related pathways. qPCR validation showed that protein tyrosine phosphatase receptor-type R (PTPRR) had the highest verified log2 FC (abs) among the top 15 dysregulated genes. Overexpression of PTPRR increased the sensitivity of MM cells against Que, significantly inhibiting their proliferation and colony formation ability; silencing of PTPRR showed the opposite results. Furthermore, bioinformatics analyses and PPI network construction of PTPRR indicated that dephosphorylation of ERK might be the potential pathway for the PTPRR-induced inhibition of MM cell proliferation. In summary, our study identified the gene expression profile in Que-treated MM cells and demonstrated that the upregulation of PTPRR was one of the important mechanisms for the Que-induced inhibition of MM cell proliferation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/genetics , Plasma Cells/drug effects , Quercetin/pharmacology , Receptor-Like Protein Tyrosine Phosphatases, Class 7/genetics , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Plasma Cells/metabolism , Plasma Cells/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 7/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 7/metabolism , Signal Transduction
18.
Cancer Cell Int ; 21(1): 285, 2021 May 30.
Article in English | MEDLINE | ID: mdl-34053438

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. METHODS: We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. RESULTS: The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. CONCLUSION: The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.

19.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 575-583, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33821934

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, characterized by high heterogeneity. The poor outcome of a portion of patients who suffer relapsing or resistant to conventional treatment impels the development of novel agents for DLBCL. DCZ0825 is a novel compound derived from pterostilbene and osalmide, whose antitumor activities have drawn our attention. In this study, we found that DCZ0825 exhibited high cytotoxicity toward DLBCL cell lines in a dose- and time-dependent manner, as revealed by cell counting kit-8 assay. Flow cytometry and western blot analysis results showed that DCZ0825 also promoted cell apoptosis via both extrinsic and intrinsic apoptosis pathways mediated by caspase. In addition, DCZ0825 induced cell cycle arrest in the G2/M phase by downregulating Cdc25C, CDK1, and Cyclin B1, thus interfering with cell proliferation. Further investigation showed the involvement of the phosphatidylinositol 3-kinase (PI3K)‒AKT‒mTOR/JNK pathway in the efficacy of DCZ0825 against DLBCL. Remarkably, DCZ0825 also exerted notable cytotoxic effects in vivo as well, with low toxicity to important internal organs such as the liver and kidney. Our results suggest that DCZ0825 may have the potential to become a novel anti-DLBCL agent or to replenish the conventional therapeutic scheme of DLBCL.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphoma, Large B-Cell, Diffuse , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology
20.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 775-783, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33891090

ABSTRACT

Resveratrol, a natural compound extracted from the skins of grapes, berries, or other fruits, has been shown to have anti-tumor effects against multiple myeloma (MM) via promoting apoptosis and inhibiting cell viability. In addition to apoptosis, autophagy also plays a significant role in anti-tumor effects. However, whether autophagy is involved in anti-MM activity of resveratrol remains unclear. In this study, human MM cell lines U266, RPMI-8226, and NCI-H929 were treated with resveratrol. Cell Counting Kit-8 assay and colony formation assay were used to measure cell viability. Western blot analysis was used to detect apoptosis- and autophagy-associated proteins. 3-Methyladenine (3-MA) was applied to inhibit autophagy. Results showed that resveratrol inhibited cell viability and colony formation via promoting apoptosis and autophagy in MM cell lines U266, RPMI-8226, and NCI-H929. Resveratrol promoted apoptosis-related proteins, Caspase-3 activating poly-ADP-ribose polymerase and Caspase-3 cleavage, and decreased the protein level of Survivin in a dose-dependent manner. Additionally, resveratrol upregulated the levels of LC3 and Beclin1 in a dose-dependent way, indicating that autophagy might be implicated in anti-MM effect of resveratrol. Furthermore, 3-MA relieved the cytotoxicity of resveratrol by blocking the autophagic flux. Resveratrol increased the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase and decreased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream substrates p70S6K and 4EBP1 in a dose-dependent manner, leading to autophagy. Therefore, our results suggest that resveratrol exerts anti-MM effects through apoptosis and autophagy, which can be used as a new therapeutic strategy for MM in clinic.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Multiple Myeloma/metabolism , Resveratrol/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adenosine Monophosphate/metabolism , Beclin-1/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Microtubule-Associated Proteins/metabolism , Multiple Myeloma/pathology , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...