Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 415: 135763, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36870208

ABSTRACT

Effects of microwave and traditional water bath treatment at different temperatures (70, 80, 90 ℃) on in vitro digestion rate and antioxidant activity of digestion products of quinoa protein were investigated. The results indicated microwave treatment at 70 ℃ produced the highest quinoa protein digestion rate and the strongest antioxidant activities of its digestion products (P < 0.05), which was further verified by the results of free amino, sulfhydryl group, gel electrophoresis, amino acid profiles and the molecular weight distribution of the digestion products. However, limited exposure of active groups induced by water bath treatment might decrease the susceptibility of digestive enzymes and subsequently lower the digestibility and antioxidant activities of quinoa protein. The results suggested that a moderate microwave treatment could be used as a potential way to enhance the in vitro digestion rate of quinoa protein, as well as increase the antioxidant activities of its digestion products.


Subject(s)
Antioxidants , Chenopodium quinoa , Antioxidants/chemistry , Chenopodium quinoa/chemistry , Microwaves , Heating , Proteins , Digestion , Water
2.
Rev Sci Instrum ; 93(4): 044708, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35489952

ABSTRACT

A cryogenic cesium atomic fountain clock is a novel clock with the microwave cavity and atomic free flight region placed in liquid nitrogen. On the one hand, the blackbody radiation shift is reduced at cryogenic temperature. On the other hand, the vacuum in the atomic free flight region is optimized, and the background gas collision shift reduced. The microwave resonant cavity is the most important unit in a cryogenic cesium atomic fountain clock. Through theoretical and simulative investigation, this study designs the configuration and dimensions for an optimized microwave cavity. Concurrently, experiments reveal the effects of temperature, pressure, humidity, and other factors on the resonant frequency of the microwave cavity. Combining the theoretical and experimental study, we obtain the resonant frequency difference between the microwave cavity in a cryogenic vacuum and at room temperature and ambient pressure. By subtracting this frequency difference, we adjust the microwave cavity for room temperature and ambient pressure, then vacuumize and immerse it in liquid nitrogen for verification and fine tuning. Finally, we determine that the microwave cavity resonant frequency deviation from the clock transition frequency is 10 kHz with an unloaded quality factor of 25 000, which meets the application requirements of the cryogenic cesium atomic fountain clock.

3.
Sensors (Basel) ; 21(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34960427

ABSTRACT

Second-order Zeeman frequency shift is one of the major systematic factors affecting the frequency uncertainty performance of cesium atomic fountain clock. Second-order Zeeman frequency shift is calculated by experimentally measuring the central frequency of the (1,1) or (-1,-1) magnetically sensitive Ramsey transition. The low-frequency transition method can be used to measure the magnetic field strength and to predict the central fringe of (1,1) or (-1,-1) magnetically sensitive Ramsey transition. In this paper, we deduce the formula for magnetic field measurement using the low-frequency transition method and measured the magnetic field distribution of 4 cm inside the Ramsey cavity and 32 cm along the flight region experimentally. The result shows that the magnetic field fluctuation is less than 1 nT. The influence of low-frequency pulse signal duration on the accuracy of magnetic field measurement is studied and the optimal low-frequency pulse signal duration is determined. The central fringe of (-1,-1) magnetically sensitive Ramsey transition can be predicted by using a numerical integrating of the magnetic field "map". Comparing the predicted central fringe with that identified by Ramsey method, the frequency difference between these two is, at most, a fringe width of 0.3. We apply the experimentally measured central frequency of the (-1,-1) Ramsey transition to the Breit-Rabi formula, and the second-order Zeeman frequency shift is calculated as 131.03 × 10-15, with the uncertainty of 0.10 × 10-15.

4.
Ultrason Sonochem ; 77: 105685, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34364069

ABSTRACT

Protein oxidation leads to covalent modification of structure and deterioration of functional properties of quinoa protein. The objective of this study was to investigate the effects of ultrasonic treatment on the functional and physicochemical properties of quinoa protein oxidation aggregates. In this concern, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was selected as oxidative modification of quinoa protein. The microstructure of quinoa protein displayed by scanning electron microscope (SEM) indicated that oxidation induced extensive aggregation, leading to carbonylation and degradation of sulfhydryl groups. Aggregation induced by oxidation had a negative effect on the solubility, turbidity, emulsifying stability. However, according to the analysis of physicochemical properties, ultrasonic significantly improved the water solubility of quinoa protein. The quinoa protein treated by ultrasonic for 30 min exhibited the best dispersion stability in water, which corresponded to the highest ζ-potential, smallest particle size and most uniform distribution. Based on the FT-IR, SDS-PAGE and surface hydrophobicity analysis, the increase of α-helix, ß-turn and surface hydrophobicity caused by cavitation effect appeared to be the main mechanism of quinoa protein solubilization. In addition, the hydrophobic region of the protein was re-buried by excessive ultrasonic treatment, and the protein molecules were reaggregated by disulfide bonds. Microstructural observations further confirmed that ultrasonic treatment effectively inhibited protein aggregation and improved the functional properties of quinoa protein.


Subject(s)
Chenopodium quinoa/chemistry , Plant Proteins/chemistry , Protein Aggregates , Ultrasonic Waves , Amidines/chemistry , Food Quality , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...