Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12132, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802497

ABSTRACT

The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.


Subject(s)
Corpus Striatum , Disease Models, Animal , Parkinson Disease , Physical Conditioning, Animal , Receptors, Dopamine D2 , Animals , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Corpus Striatum/metabolism , Mice , Parkinson Disease/therapy , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Male , Neurons/metabolism , Mice, Inbred C57BL , Motor Activity/physiology , Medium Spiny Neurons
2.
Appl Opt ; 63(8): 2109-2120, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38568655

ABSTRACT

This paper proposes a switchable multifunctional metamaterial device operating in the terahertz (THz) band. The device is loaded with an equivalent diode and utilizes vanadium dioxide (V O 2). The middle layer of the whole device, a metal layer, divides the device into the I side and the II side. When the diode is ON, the I side can achieve dual-band absorption at 1.975 and 4.345 THz. When the diode is OFF, the I side can achieve single-band absorption at 4.28 THz. In the case of V O 2 being insulating, the II side can achieve linear-to-linear (LTL) polarization conversion at 2.342-4.18 THz. In the case of V O 2 being conductive, the II side can realize linear-to-circular (LTC) polarization conversion at 2.105-3.283 THz. The device provides a new strategy for the subsequent combination of multiple functions. The device can be used in electromagnetic stealth, intelligent applications, radiometers, and sensors and has relatively large application potential in miniaturized multifunctional metamaterials and THz band research.

3.
Alzheimers Dement ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506634

ABSTRACT

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.

4.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460121

ABSTRACT

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Neuroglia/pathology , Plaque, Amyloid/pathology , Humans
5.
Front Neurol ; 14: 1254447, 2023.
Article in English | MEDLINE | ID: mdl-37881310

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and cognitive impairments. The progressive depletion of dopamine (DA) is the pathological basis of dysfunctional goal-directed and habitual control circuits in the basal ganglia. Exercise-induced neuroplasticity could delay disease progression by improving motor and cognitive performance in patients with PD. This paper reviews the research progress on the motor-cognitive basal ganglia circuit and summarizes the current hypotheses for explaining exercise intervention on rehabilitation in PD. Studies on exercise mediated mechanisms will contribute to the understanding of networks that regulate goal-directed and habitual behaviors and deficits in PD, facilitating the development of strategies for treatment of PD.

6.
Appl Opt ; 62(12): 3149-3159, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37133163

ABSTRACT

This paper proposes a multifunctional metamaterial device operating in the terahertz (THz) band. The metamaterial device can switch functions by using the phase transition properties of vanadium dioxide (V O 2) and the photoconductive effect of silicon. An intermediate metal layer divides the device into the I side and II side. When V O 2 is in the insulating state, the I side can achieve polarization conversion from linear polarization waves to linear polarization waves at 0.408-0.970 THz. When V O 2 is in the metal-like state, the I side can perform polarization conversion from linear polarization waves to circular polarization waves at 0.469-1.127 THz. When silicon is not excited in the absence of light, the II side can perform polarization conversion from linear polarization waves to linear polarization waves at 0.799-1.336 THz. As the light intensity increases, the II side can realize stable broadband absorption at 0.697-1.483 THz when silicon is in the conductive state. The device can be applied to wireless communications, electromagnetic stealth, THz modulation, THz sensing, and THz imaging. Moreover, it provides a fresh idea for the design of multifunctional metamaterial devices.

7.
Opt Express ; 31(5): 8884-8896, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859994

ABSTRACT

Frequency selective surfaces (FSSs), modern artificial materials, show great potential in engineering applications due to their excellent frequency selection capabilities. In this paper, we introduce a flexible strain sensor based on FSS reflection characteristics, which can be well conformally attached to the surface of an object and bear mechanical deformation from a certain load. When the FSS structure changes, the original working frequency will be shifted. By measuring the difference in electromagnetic performance, the strain degree of the object can be monitored in real-time. In this study, we designed an FSS sensor with a working frequency of 31.4 GHz and amplitude that reaches -35 dB that exhibits favorable resonance properties in the Ka-band. The quality factor of FSS is 16.2, which indicates that the sensor has excellent sensing performance. The sensor was applied in the strain detection of a rocket engine case through statics and electromagnetic simulations. The analysis showed that the working frequency of the sensor shifted by approximately 200 MHz for 1.64% radial expansion of the engine case and the frequency shift exhibits an excellent linear relationship with the deformation in diverse loads, so it can be used for accurate strain detection of the case. Based on experiments, we carried out the uniaxial tensile test of the FSS sensor in this study. The sensor's sensitivity was 1.28 GHz/mm when the FSS was stretched by 0-3 mm in the test. Therefore, the FSS sensor has high sensitivity and strong mechanical properties, which verifies the practical value of the FSS structure designed in this paper. It has a broad development space in this field.

8.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36803190

ABSTRACT

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Subject(s)
Alzheimer Disease , Demyelinating Diseases , Mice , Animals , Alzheimer Disease/metabolism , Cuprizone/metabolism , RNA Splicing , Mutation , Plaque, Amyloid/pathology , Disease Models, Animal , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Microglia/metabolism , Brain/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
9.
Fitoterapia ; 164: 105357, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460204

ABSTRACT

Two new flavonoid glycosides scutelikiosides A and B (13 and 23), along with twenty-one known compounds from the 75% ethanol extract of roots of Scutellaria likiangensis Diels. Their structures were determined by the comprehensive analyses of the spectroscopic data (1D NMR, 2D NMR, HRESIMS, and CD) and physicochemical properties. Compounds 4-14, 17-19, 21, and 22 were evaluated for their in vivo antimalarial activities against Plasmodium yoelii BY265RFP in mice. Compound 17 exhibited significant activity close to artemisinin with an inhibition ratio of 29.2%, and compounds 6, 9-12, 14, 18, 19, and 22 exhibited moderate antimalarial activities with inhibition ratios ranging from 10.2% to 20.0% at a dose of 25 mg/kg/day. In addition, a summary of preliminary structure-activity relationship of isolated flavonoids for in vivo antimalarial activity was described.


Subject(s)
Antimalarials , Scutellaria , Mice , Animals , Flavonoids/chemistry , Antimalarials/pharmacology , Scutellaria/chemistry , Molecular Structure , Glycosides/pharmacology
10.
Cell Death Differ ; 30(1): 195-207, 2023 01.
Article in English | MEDLINE | ID: mdl-36171331

ABSTRACT

Despite remarkable efficacy, targeted treatments often yield a subpopulation of residual tumor cells in part due to non-genetic adaptions. Previous mechanistic understanding on the emergence of these drug-tolerant persisters (DTPs) has been limited to epigenetic and transcriptional reprogramming. Here, by comprehensively interrogating therapy-induced early dynamic protein changes in diverse oncogene-addicted non-small cell lung cancer models, we identified adaptive MCL1 increase as a new and universal mechanism to confer apoptotic evasion and DTP formation. In detail, acute MAPK signaling disruption in the presence of genotype-based tyrosine kinase inhibitors (TKIs) prompted mitochondrial accumulation of pro-apoptotic BH3-only protein BIM, which sequestered MCL1 away from MULE-mediated degradation. A small-molecule combination screen uncovered that PI3K-mTOR pathway blockade prohibited MCL1 upregulation. Biochemical and immunocytochemical evidence indicated that mTOR complex 2 (mTORC2) bound and phosphorylated MCL1, facilitating its interaction with BIM. As a result, short-term polytherapy combining antineoplastic TKIs with PI3K, mTOR or MCL1 inhibitors sufficed to prevent DTP development and promote cancer eradication. Collectively, these findings support that upfront and transient targeting of BIM-dependent, mTORC2-regulated adaptive MCL1 preservation holds enormous promise to improve the therapeutic index of molecular targeted agents.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases , Phosphatidylinositol 3-Kinases
11.
Oxid Med Cell Longev ; 2022: 3151071, 2022.
Article in English | MEDLINE | ID: mdl-36267808

ABSTRACT

The development of safe and effective therapeutic interventions is an important issue for delaying aging and reducing the risk of aging-related diseases. Chinese herbal medicines for the treatment of aging and other complex diseases are desired due to their multiple components and targets. Through screening for effects on lifespan of 836 Chinese herbal medicine extracts, Nicandra physalodes extract (HL0285) was found to exhibit lifespan extension activity in Caenorhabditis elegans (C. elegans). In further experiments, HL0285 improved healthspan, enhanced stress resistance, and delayed the progression of neurodegenerative diseases in C. elegans. Additionally, it ameliorated senescence in human lung fibroblasts (MRC-5 cells) and reversed liver function damage and reduced senescence marker levels in doxorubicin- (Dox-) induced aging mice. In addition, the longevity effect of HL0285 in C. elegans was dependent on the DAF-16 and HSF-1 signaling pathways, as demonstrated by the results of the mutant lifespan, gene level, and GFP level assays. In summary, we discovered that HL0285 had an antiaging effect in C. elegans, MRC-5 cells, and Dox-induced aging mice and deserves to be explored in the future studies on antiaging agents.


Subject(s)
Caenorhabditis elegans Proteins , Drugs, Chinese Herbal , Humans , Animals , Mice , Caenorhabditis elegans/metabolism , Longevity , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Drugs, Chinese Herbal/pharmacology , Oxidative Stress , Transcription Factors/metabolism , Doxorubicin/pharmacology , Forkhead Transcription Factors/metabolism
12.
Cancer Res ; 82(19): 3588-3602, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35857807

ABSTRACT

Therapeutic perturbation of cyclin-dependent kinase 12 (CDK12) is proposed to have pleiotropic effects in ovarian cancer, including direct cytotoxicity against tumor cells and indirect induction of immunogenicity that confer synthetic sensitivity to immune-based treatment. However, formal testing of this hypothesis has been hindered by an insufficient mechanistic understanding of CDK12 and its close homolog CDK13, as well as generally unfavorable pharmacokinetics of available CDK12/CDK13 covalent inhibitors. In this study, we used an innovative arsenous warhead modality to develop an orally bioavailable CDK12/CDK13 covalent compound. The dual CDK12/CDK13 inhibitors ZSQ836 exerted potent anticancer activity in cell culture and mouse models and induced transcriptional reprogramming, including downregulation of DNA damage response genes. CDK12 and CDK13 were both ubiquitously expressed in primary and metastatic ovarian cancer, and the two kinases performed independent and synergistic functions to promote tumorigenicity. Unexpectedly, although ZSQ836 triggered genomic instability in malignant cells, it counterintuitively impaired lymphocytic infiltration in neoplastic lesions by interfering with T-cell proliferation and activation. These findings highlight the Janus-faced effects of dual CDK12/CDK13 inhibitors by simultaneously suppressing tumor and immune cells, offering valuable insights into the future direction of drug discovery to pharmacologically target CDK12. SIGNIFICANCE: This study dissects the specific roles of CDK12 and CDK13 in ovarian cancer and develops a CDK12/CDK13 inhibitor that impairs both tumor and immune cells, which could guide future CDK12 inhibitor development.


Subject(s)
CDC2 Protein Kinase , Ovarian Neoplasms , Animals , Carcinoma, Ovarian Epithelial/genetics , Cyclin-Dependent Kinases/genetics , Female , Genes, cdc , Humans , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
13.
Oncogene ; 41(12): 1767-1779, 2022 03.
Article in English | MEDLINE | ID: mdl-35124696

ABSTRACT

Müllerian tissue-specific oncogenes, prototyped by PAX8, underlie ovarian tumorigenesis and represent unique molecular vulnerabilities. Further delineating such lineage-dependency factors and associated therapeutic implications would provide valuable insights into ovarian cancer biology and treatment. In this study, we identified SOX17 as a new lineage-survival master transcription factor, which shared co-expression pattern with PAX8 in epithelial ovarian carcinoma. Genetic disruption of SOX17 or PAX8 analogously inhibited neoplastic cell viability and downregulated a spectrum of lineage-related transcripts. Mechanistically, we showed that SOX17 physically interacted with PAX8 in cultured cell lines and clinical tumor specimens. The two nuclear proteins bound to overlapping genomic regions and regulated a common set of downstream genes, including those involved in cell cycle and tissue morphogenesis. In addition, we revealed that small-molecule inhibitors of transcriptional cyclin-dependent kinases (CDKs) effectively reduced SOX17 and PAX8 expression. ZSQ1722, a novel orally bioavailable CDK12/13 covalent antagonist, exerted potent anti-tumor activity in xenograft models. These findings shed light on an actionable lineage-survival transcriptional complex in ovarian cancer, and facilitated drug discovery by generating a serial of candidate compounds to pharmacologically target this difficult-to-treat malignancy.


Subject(s)
Ovarian Neoplasms , PAX8 Transcription Factor , SOXF Transcription Factors , Cell Cycle , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , PAX8 Transcription Factor/genetics , PAX8 Transcription Factor/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
14.
Front Cell Dev Biol ; 9: 781365, 2021.
Article in English | MEDLINE | ID: mdl-34901025

ABSTRACT

GSDME is a newly recognized executor of cellular pyroptosis, and has been recently implicated in tumor growth and immunity. However, knowledge about the molecular regulators underlying GSDME abundance remains limited. Here, we performed integrative bioinformatics analyses and identified that epithelial-mesenchymal transition (EMT) gene signatures exhibited positive correlation with GSDME levels across human cancers. A causal role was supported by the observation that EMT dictated GSDME reversible upregulation in multiple experimental models. Mechanistically, transcriptional activation of GSDME was directly driven by core EMT-activating transcription factors ZEB1/2, which bound to the GSDME promoter region. Of functional importance, elevated GSDME in mesenchymally transdifferentiated derivatives underwent proteolytic cleavage upon antineoplastic drug exposure, leading to pyroptotic cell death and consequent cytokine release. Taken together, our findings pinpointed a key transcriptional machinery controlling GSDME expression and indicated potential therapeutic avenues to exploit GSDME-mediated inflammatory pyroptosis for the treatment of mesenchymal malignancies.

15.
Front Aging Neurosci ; 13: 695108, 2021.
Article in English | MEDLINE | ID: mdl-34194319

ABSTRACT

Aberrant cortical spike-local field potential (LFP) coupling leads to abnormal basal ganglia activity, disruption of cortical function, and impaired movement in Parkinson's disease (PD). Here, the primary motor cortex mediated plasticity mechanism underlying behavioral improvement by exercise intervention was investigated. Exercise alleviates motor dysfunction and induces neuroplasticity in PD. In this study, Sprague-Dawley (SD) rats were injected with 6-hydroxydopamine (6-OHDA) to induce unilateral nigrostriatal dopamine depletion. Two weeks later, a 4-week exercise intervention was initiated in the PD + exercise (Ex) group. Multichannel recording technology recorded spikes and LFPs in rat motor cortices, and balanced ability tests evaluated behavioral performance. The balanced ability test showed that the total crossing time/front leg error/input latency time was significantly lower in PD + Ex rats than in PD rats (P < 0.05). Scalograms and LFP power spectra indicated increased beta-range LFP power in lesioned hemispheres, with exercise reducing LFP power spectral density. Spike-triggered LFP waveform averages showed strong phase-locking in PD motor cortex cells, and exercise reduced spike-LFP synchronization. Our results suggest that exercise can suppress overexcitability of LFPs and minimize spike-LFP synchronization in the motor cortex, leading to motor-improving effects in PD.

16.
Cell Death Differ ; 27(2): 497-508, 2020 02.
Article in English | MEDLINE | ID: mdl-31243343

ABSTRACT

Anaplastic thyroid cancer (ATC) is the most aggressive human thyroid malignancy, characterized by dedifferentiation and resistance to radioiodine therapy. The underlying mechanisms regulating ATC dedifferentiation are largely unknown. Here, we show that REGγ, a noncanonical proteasome activator highly expressed in ATC, is an important regulator of differentiation in ATC cells. Ablation of REGγ significantly restored expression of thyroid-specific genes, enhanced iodine uptake, and improved the efficacy of 131I therapy in ATC xenograft models. Mechanistically, REGγ directly binds to the TGF-ß signaling antagonist Smad7 and promotes its degradation, leading to the activation of the TGF-ß signal pathway. With gain- and loss-of-function studies, we demonstrate that Smad7 is an important mediator for the REGγ function in ATC cell dedifferentiation, which is supported by expression profiles in human ATC tissues. It seems that REGγ impinges on repression of thyroid-specific genes and promotion of tumor malignancy in ATC cells by activating the TGF-ß signal pathway via degradation of Smad7. Thus, REGγ may serve as a novel therapeutic target for allowing radioiodine therapy in anaplastic thyroid cancer patients with poor prognosis.


Subject(s)
Autoantigens/metabolism , Proteasome Endopeptidase Complex/metabolism , Smad7 Protein/metabolism , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Cell Differentiation , Cell Line , Humans , Signal Transduction , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/radiotherapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/radiotherapy
17.
Sci Rep ; 9(1): 18744, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822693

ABSTRACT

Poriferous TiO2/GO (denoted as TGO-x%) photocatalysts with ultrathin grapheme oxide (GO) layer were prepared by a hydrothermal method, the adsorption and photocatalytic degradation and its kinetics about Methylene blue(MB) were studied systematically. All the TGO-x% showed improved adsorption and photodegradation performance. TGO-25% had excellent adsorptivity while TGO-20% exhibit the highest visible light photocatalytic degradation activity. The adsorption capacity for TGO-25% was 20.25 mg/gcatalyst along with the k1 was about 0.03393 min·gcatalyst/mg, this enhancement was mainly owing to the strong adsorption capacity of GO and the stacking structure of sheets and nanoparticles. GO sheets prevented the agglomeration of TiO2 particles and TiO2 nanoparticles also prevented the agglomeration of GO sheets, which could provides greater surface area. Besides, the remarkably superior photodegradation activity of TiO2/GO composites is mainly attribute to the strong absorption of visible light and the effective charge separation revealed by the photoluminescence, the total removal rate of MB is 97.5% after 35 min adsorption and 140 min degradation, which is 3.5 times higher than that of TiO2.

18.
An Acad Bras Cienc ; 91(4): e20180957, 2019.
Article in English | MEDLINE | ID: mdl-31800698

ABSTRACT

The mechanism behind exercise-induced fatigue is a significant topic in the field of sports physiology. Therefore, establishing and evaluating an acute exercise-induced fatigue animal model that explores the limits of the motor system may provide greater insight into these mechanisms. Heart rate is an important quantitative parameter that accurately reflects the immediate change in physical function due to exercise load. And there is likely to be an important correlation between heart rate and behavioral performance. In this study, changes in heart rate and behavioral indexes during exercise-induced fatigue were quantitatively analyzed in rats using heart rate telemetry and video methods respectively. The behavioral indexes were used as independent variables and the degree of fatigue was used as the forecast value. Ternary quadratic function curve fitting was used to deduce a formula to calculate a fatigue score: Y = 15.2548+0.4346∙xa-0.1154∙xb+0.6826∙xc+0.0044∙xa∙xb-0.0021∙xb∙xc-0.0013∙xc∙xa-0.0023∙xa2-0.0016∙xb2 (r2=0.906). It identified a linear relationship between heart rate and exercise intensity, with a plateau in heart rate occurring during difference periods. It will serve as an effective reference for the modeling of exercise-induced fatigue. In addition, it also provides a theoretical method for analyzing the correlation between peripheral and central parameters.


Subject(s)
Exercise Test , Fatigue , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Animals , Male , Models, Animal , Rats , Rats, Wistar , Time Factors
19.
Elife ; 82019 05 03.
Article in English | MEDLINE | ID: mdl-31050342

ABSTRACT

PAX8 is a prototype lineage-survival oncogene in epithelial ovarian cancer. However, neither its underlying pro-tumorigenic mechanisms nor potential therapeutic implications have been adequately elucidated. Here, we identified an ovarian lineage-specific PAX8 regulon using modified cancer outlier profile analysis, in which PAX8-FGF18 axis was responsible for promoting cell migration in an autocrine fashion. An image-based drug screen pinpointed that PAX8 expression was potently inhibited by small-molecules against histone deacetylases (HDACs). Mechanistically, HDAC blockade altered histone H3K27 acetylation occupancies and perturbed the super-enhancer topology associated with PAX8 gene locus, resulting in epigenetic downregulation of PAX8 transcripts and related targets. HDAC antagonists efficaciously suppressed ovarian tumor growth and spreading as single agents, and exerted synergistic effects in combination with standard chemotherapy. These findings provide mechanistic and therapeutic insights for PAX8-addicted ovarian cancer. More generally, our analytic and experimental approach represents an expandible paradigm for identifying and targeting lineage-survival oncogenes in diverse human malignancies.


Subject(s)
Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , PAX8 Transcription Factor/genetics , Acetylation/drug effects , Cell Line, Tumor , Cell Lineage/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylases/genetics , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tissue Array Analysis
20.
Neurosci Lett ; 705: 143-150, 2019 07 13.
Article in English | MEDLINE | ID: mdl-31029678

ABSTRACT

Hyperexcitability in the corticostriatal glutamatergic pathway may have a pivotal role in the pathogenesis of Parkinson's disease (PD). Metabotropic glutamate receptors (mGluRs) modulate glutamate transmission by both pre- and postsynaptic mechanisms, making them attractive targets for modifying pathological changes in the corticostriatal pathway. Exercise reportedly alleviates motor dysfunction and induced neuroplasticity in glutamatergic transmission. Here, the mGluR-mediated plasticity mechanism underlying behavioral improvement by exercise intervention was investigated. The experimental models were prepared by 6-hydroxydopamine injection into the right medial forebrain bundle. The models were evaluated with the apomorphine-induced rotation test. Starting 2 weeks postoperatively, exercise intervention was applied to the PD + Ex group for 4 weeks. The exercise-intervention effects on locomotor behavior, glutamate levels, and mGluR (mGluR2/3 and mGluR5) expression in hemiparkinsonian rats were investigated. The results showed that hemiparkinsonian rats have a significant increase in extracellular glutamate levels in the lesioned-lateral striatum. MGluR2/3 protein expression was reduced while mGluR5 protein expression was increased in the striatum. Notably, treadmill exercise markedly reversed these abnormal changes in the corticostriatal glutamate system and promoted motor performance in PD rats. These findings suggest that mGluR-mediated glutamatergic transmission in the corticostriatal pathway may serve as an attractive target for exercise-induced neuroplasticity in hemiparkinsonian rats.


Subject(s)
Corpus Striatum/physiopathology , Exercise Therapy , Locomotion/physiology , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/biosynthesis , Receptors, Metabotropic Glutamate/biosynthesis , Animals , Corpus Striatum/metabolism , Glutamic Acid/metabolism , Male , Medial Forebrain Bundle/drug effects , Oxidopamine , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...