Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(27): 11481-11489, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38915272

ABSTRACT

This study investigated a novel electrocatalyst with a core-shell structure of CoNiP@N,P-C. The unique carbon shell of this catalyst serves a dual purpose: exposing numerous active sites and safeguarding CoNiP nanoparticles from dissolution caused by the electrolyte. As a result, the CoNiP@N,P-C nanoparticles exhibit exceptional electrochemical properties. The CoNiP@N,P-C catalyst displays overpotentials of 234 and 314 mV for the HER and OER, respectively, within a simulated seawater solution (1 M KOH + 0.5 M NaCl), indicating its outstanding catalytic performance. Moreover, when subjected to full seawater splitting, the CoNiP@N,P-C catalyst exhibited high activity, achieving a 1.71 V cell voltage at a current density of 10 mA cm-2. As revealed by density functional theory (DFT) calculations, the CoNiP@N,P-C catalyst exhibits Gibbs free energy for hydrogen adsorption (ΔGH* = -0.19 eV) that is decreased in comparison with CoP@N,P-C, NiP@N,P-C, and N,P-C (-0.321 eV, -0.434 eV, and 0.723 eV, respectively). This finding confirms that the core-shell structure plays a role in enhancing the HER kinetics and improving the catalytic performance, which is consistent with the experimental observations. Consequently, this study introduces the concept of utilizing bimetal phosphide core-shell structures for overall seawater splitting, offering a novel approach in this field of research.

2.
Nano Lett ; 24(25): 7662-7671, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38870422

ABSTRACT

Extensive investigations have proven the effectiveness of elastic binders in settling the challenge of structural damage posed by volume expansion of high-capacity anode used in nanoscale silicon. However, the sluggish ionic conductivity of polymer binder severely restricts the electrode reactions, making it unsuitable for practical applications. Inspired by the biological tissues with rapid neurotransmission and robust muscles, we propose a biomimetic binder that contains ionic conductive polymer (by polymerization reaction of poly(ethylene glycol) diglycidyl ether and polyethylenimine) and rigid polymer backbone (polyacrylic acid), which can effectively mitigate both Li-ion transport resistance and lithiation stress to stabilize the silicon nanoparticles during cycles. Consequently, the silicon anode with biomimetic binder achieves a rate capability of 1897 mAh g-1 at 8.0 A g-1 and capacity retention of 87% after 150 cycles under areal capacity upon 3.0 mAh cm-2. These results demonstrate the possibility of decoupling ionic conductivity from mechanical properties toward practical high-capacity anodes for energy-dense batteries.

3.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632579

ABSTRACT

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Subject(s)
Hypertension , Microbiota , Humans , Rats , Animals , Rats, Inbred SHR , Neuroinflammatory Diseases , Hypertension/metabolism , Blood Pressure , Medulla Oblongata/metabolism , Acetates/pharmacology
4.
ACS Omega ; 9(1): 1881-1893, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222524

ABSTRACT

The coal structure is extensively used for studying the properties of coal, and the construction of accurate and reliable coal structure models can promote these researches. In this study, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were used to analyze the changes in the coal structure as a function of the coalification degree, and a semiquantitative model construction method based on FTIR, XRD, and X-ray photoelectron spectroscopy (XPS) analyses was proposed. With an increase in the coalification degree, the size of the aromatic cores in the coal increased. During the conversion from lignite to bituminous coal, the content of aliphatic structures increased, while the content of oxygen-containing functional groups (OFGs) significantly decreased. Conversely, during the conversion from bituminous coal to anthracite, the content of aliphatic structures decreased while the content of OFGs slightly increased. The calculated FTIR spectra of the coal structure models were consistent with the experimental FTIR spectra, which confirmed the accuracy of the models. Furthermore, the models successfully explained the microscopic mechanism underlying the differences in the wettability of the coal samples with varying coalification degrees. The construction method and coal structure models in this study will be more widely applied in future research.

5.
Bioengineered ; 12(1): 6981-6995, 2021 12.
Article in English | MEDLINE | ID: mdl-34545768

ABSTRACT

The ecological restoration of coal gangue can be achieved by planting Cajanus cajan (pigeon pea) because of its developed root system. The close relationships soil microorganisms have with plants are crucial for improving soil composition; the soil composition affects nutrient absorption. The microbial composition and function of soil planted with C. cajan in reclaimed land were compared with soil that was not planted with C. cajan (the control). Results showed that the dominant microflora in the soil significantly changed after planting C. cajan. Before planting, the dominant microflora included members of the phyla Sulfobacteria and Acidobacteria. After planting, the dominant microflora contained bacteria from phyla and classes that included Actinobacteria, Acidimicubia, Thermoleophilia, and Anaerolineae. Additionally, there were significant differences in the bacterial composition of each layer in soils planted with C. cajan. Principal component analysis revealed that the interpretation degrees of the results for PC2 and PC3 axes were 10.46% and 3.87%, respectively. The dominant microflora were Vicinamibacterales, Nocardioides, and Arthrobacter in the surface soil; Actinophytocola and Sphingomonas in the deep soil; and Sulfobacillus and Acidimicrobium in the mixed-layer soil. Function prediction analysis using the bioinformatics software package PICRUSt revealed that the abundance of operational taxonomic units corresponding to sigma 54-specific transcriptional regulators, serine threonine protein kinase, and histidine kinase increased by 111.2%, 56.8%, and 47.4%, respectively, after planting C. cajan. This study provides a reference for interactions among microorganisms in reclaimed soils for guiding the development and restoration of waste coal gangue hills.


Subject(s)
Bacteria , Cajanus , Environmental Restoration and Remediation , High-Throughput Nucleotide Sequencing/methods , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Cajanus/metabolism , Cajanus/physiology , DNA, Bacterial/classification , DNA, Bacterial/genetics , Industrial Waste , Principal Component Analysis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...