Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(18): e2308799, 2024 May.
Article in English | MEDLINE | ID: mdl-38270498

ABSTRACT

The heterogeneity, species diversity, and poor mechanical stability of solid electrolyte interphases (SEIs) in conventional carbonate electrolytes result in the irreversible exhaustion of lithium (Li) and electrolytes during cycling, hindering the practical applications of Li metal batteries (LMBs). Herein, this work proposes a solvent-phobic dynamic liquid electrolyte interphase (DLEI) on a Li metal (Li-PFbTHF (perfluoro-butyltetrahydrofuran)) surface that selectively transports salt and induces salt-derived SEI formation. The solvent-phobic DLEI with C-F-rich groups dramatically reduces the side reactions between Li, carbonate solvents, and humid air, forming a LiF/Li3PO4-rich SEI. In situ electrochemical impedance spectroscopy and Ab-initio molecular dynamics demonstrate that DLEI effectively stabilizes the interface between Li metal and the carbonate electrolyte. Specifically, the LiFePO4||Li-PFbTHF cells deliver 80.4% capacity retention after 1000 cycles at 1.0 C, excellent rate capacity (108.2 mAh g-1 at 5.0 C), and 90.2% capacity retention after 550 cycles at 1.0 C in full-cells (negative/positive (N/P) ratio of 8) with high LiFePO4 loadings (15.6 mg cm-2) in carbonate electrolyte. In addition, the 0.55 Ah pouch cell of 252.0 Wh kg-1 delivers stable cycling. Hence, this study provides an effective strategy for controlling salt-derived SEI to improve the cycling performances of carbonate-based LMBs.

2.
Adv Mater ; 35(48): e2306562, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774156

ABSTRACT

High-temperature dielectric polymers are becoming increasingly desirable for capacitive energy storage in renewable energy utilization, electrified transportation, and pulse power systems. Current dielectric polymers typically require robust aromatic molecular frameworks to ensure structural thermal stability at elevated temperatures. Nevertheless, the introduction of aromatic units compromises electrical insulation owing to pronounced π─π interactions that facilitate electron transport and eliminate the breakdown self-healing property owing to their high carbon content. Herein, an aromatic-free polynorborne copolymer exhibiting electrical conductivity-two orders of magnitude lower than that of state-of-the-art polyetherimide-at elevated temperatures and high electric fields owing to its large bandgap (≈4.64 eV) and short hopping conduction distance (≈0.63 nm) is described. Density functional theory calculations demonstrate that the copolymer can effectively suppress the excitation of high-field valence electrons. Furthermore, the incorporation of trace semiconductors results in high discharge density (3.73 J cm-3 ) and charge-discharge efficiency (95% at 150 °C), outperforming existing high-temperature dielectric polymers. The excellent electrical breakdown self-healing capability of the copolymer film at elevated temperatures further demonstrates its potential for use in dielectric capacitors capable of continuous operation under extreme conditions.

3.
Adv Mater ; 35(38): e2303460, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269455

ABSTRACT

Ultrathin and super-toughness gel polymer electrolytes (GPEs) are the key enabling technology for durable, safe, and high-energy density solid-state lithium metal batteries (SSLMBs) but extremely challenging. However, GPEs with limited uniformity and continuity exhibit an uneven Li+ flux distribution, leading to nonuniform deposition. Herein, a fiber patterning strategy for developing and engineering ultrathin (16 µm) fibrous GPEs with high ionic conductivity (≈0.4 mS cm-1 ) and superior mechanical toughness (≈613%) for durable and safe SSLMBs is proposed. The special patterned structure provides fast Li+ transport channels and tailoring solvation structure of traditional LiPF6 -based carbonate electrolyte, enabling rapid ionic transfer kinetics and uniform Li+ flux, and boosting stability against Li anodes, thus realizing ultralong Li plating/stripping in the symmetrical cell over 3000 h at 1.0 mA cm-2 , 1.0 mAh cm-2 . Moreover, the SSLMBs with high LiFePO4 loading of 10.58 mg cm-2 deliver ultralong stable cycling life over 1570 cycles at 1.0 C with 92.5% capacity retention and excellent rate capacity of 129.8 mAh g-1 at 5.0 C with a cut-off voltage of 4.2 V (100% depth-of-discharge). Patterned GPEs systems are powerful strategies for producing durable and safe SSLMBs.

4.
Nature ; 615(7950): 62-66, 2023 03.
Article in English | MEDLINE | ID: mdl-36859585

ABSTRACT

For capacitive energy storage at elevated temperatures1-4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm-3 with a charge-discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π-π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m-1 K-1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

5.
Nano Lett ; 23(5): 1810-1819, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36648158

ABSTRACT

The low piezoelectricity of piezoelectric polymers significantly restricts their applications. Introducing inorganic fillers can slightly improve the piezoelectricity of polymers, whereas it is usually at the cost of flexibility and durability. In this work, using a modulus-modulated core-shell structure strategy, all-organic nanofibers with remarkable piezoelectricity were designed and prepared by a coaxial electrospinning method. It was surprisingly found that the introduction of a nonpiezoelectric polymeric core (e.g., polycarbonate, PC) can result in 110% piezoelectric coefficient (d33) enhancement in a poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) nanofiber. Accordingly, the all-organic PVDF-TrFE@PC core-shell nanofiber exhibits record-high energy-harvesting performance (i.e., 126 V output voltage, 710 mW m-2 power density) among the reported organic piezoelectric materials. In addition, the excellent sensing capability of the core-shell nanofiber enabled us to develop a wireless vibration monitoring and analyzing system, which realizes the real-time vibration detection of a power transformer.

6.
Research (Wash D C) ; 2022: 9862980, 2022.
Article in English | MEDLINE | ID: mdl-35198985

ABSTRACT

Surface charge density has been demonstrated to be significantly impacted by the dielectric properties of tribomaterials. However, the ambiguous physical mechanism of dielectric manipulated charge behavior still restricts the construction of high-performance tribomaterials. Here, using the atomic force microscopy and Kelvin probe force microscopy, an in situ method was conducted to investigate the contact electrification and charge dynamics on a typical tribomaterial (i.e., BaTiO3/PVDF-TrFE nanocomposite) at nanoscale. Combined with the characterization of triboelectric device at macroscale, it is found that the number of transferred electrons increases with contact force/area and tends to reach saturation under increased friction cycles. The incorporated high permittivity BaTiO3 nanoparticles enhance the capacitance and electron trapping capability of the nanocomposites, efficiently inhibiting the lateral diffusion of electrons and improving the output performance of the triboelectric devices. Exponential decay of the surface potential is observed over monitoring time for all dielectric samples. At high BaTiO3 loadings, more electrons can drift into the bulk and combine with the induced charges on the back electrode, forming a large leakage current and accordingly accelerating the electron dissipation. Hence, the charge trapping/storing and dissipating, as well as the charge attracting properties, should be comprehensively considered in the design of high-performance tribomaterials.

7.
Nanoscale ; 10(37): 17751-17760, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30211423

ABSTRACT

Real-time personalized motion monitoring and analysis are important for human health. Thus, to satisfy the needs in this area and the ever-increasing demand for wearable electronics, we design and develop a wireless piezoelectric device consisting of a piezoelectric pressure sensor based on electrospun PVDF/BaTiO3 nanowire (NW) nanocomposite fibers and a wireless circuit system integrated with a data conversion control module, a signal acquisition and amplification module, and a Bluetooth module. Finally, real-time piezoelectric signals of human motion can be displayed by an App on an Android mobile phone for wireless monitoring and analysis. This wireless piezoelectric device is proven to be sensitive to human motion such as squatting up and down, walking, and running. The results indicate that our wireless piezoelectric device has potential applications in wearable medical electronics, particularly in the fields of rehabilitation and sports medicine.


Subject(s)
Movement , Nanocomposites , Polyvinyls , Wearable Electronic Devices , Wireless Technology , Cell Phone , Humans , Mobile Applications
8.
Int J Biol Macromol ; 75: 192-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25647619

ABSTRACT

The simultaneous ultrasonic/microwave-assisted extraction (UMAE) method is potentially useful for the extraction of polysaccharides from Taxus chinensis var. mairei fruits (TCFPs). In this study, we used a response surface methodology to identify optimal TCFPs extraction conditions. Optimal parameters were determined as follows: a liquid to raw material ratio of 33 mL/g, an extraction time of 10 min, a microwave power level of 560 W, and a fixed ultrasonic power of 50 W. Under the optimized conditions, TCFPs yields obtained by UMAE were 4.33 ± 0.15%, a 1.79-fold increase compared with conventional heating reflux extraction (HRE). In addition, the extraction time used in UMAE was shorter than that required for HRE: 10 versus 90 min. UMAE is therefore a rapid and efficient method for the extraction of TCFPs. The inhibitory effect of TCFPs on S180 tumor growth in vivo was also studied. The tumor inhibition rate of TCFPs was 76.33%, indicating a tumor-inhibiting effect. Analysis of organ weights demonstrated that TCFPs exhibited no toxicity to liver, kidney, spleen, heart, or lung relative to a positive control group. TCFPs thus show antitumor activity with no organ toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Fruit/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Taxus/chemistry , Analysis of Variance , Animals , Cell Line, Tumor , Electricity , Humans , Male , Mice , Microwaves , Organ Size/drug effects , Reproducibility of Results , Time Factors , Ultrasonics
9.
J Sep Sci ; 38(2): 291-300, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25413336

ABSTRACT

We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings.


Subject(s)
Benzoxazines/isolation & purification , Benzoxazoles/isolation & purification , Ionic Liquids , Microwaves , Ultrasonics , Zea mays/chemistry , Chromatography, High Pressure Liquid , Microscopy, Electron, Scanning , Spectrophotometry, Ultraviolet , Zea mays/growth & development
10.
ScientificWorldJournal ; 2014: 283024, 2014.
Article in English | MEDLINE | ID: mdl-25243207

ABSTRACT

An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62-102.36% for RU and 97.33-102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf.


Subject(s)
Ionic Liquids/chemistry , Malvaceae , Microwaves , Quercetin/isolation & purification , Rutin/isolation & purification , Ultrasonics/methods , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves , Quercetin/chemistry , Rutin/chemistry , Ultrasonics/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...