Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(14): 146402, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38640367

ABSTRACT

We demonstrate the existence of a nonequilibrium "Floquet Fermi liquid" state arising in partially filled Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of "Floquet Fermi surfaces" enclosed inside each other, resembling matryoshka dolls. We elucidate several properties of these states, including their quantum oscillations under magnetic fields which feature slow beating patterns of their amplitude reflecting the different areas of the Floquet Fermi surfaces, consistent with those observed in microwave induced resistance oscillation experiments. We also investigate their specific heat and thermodynamic density of states and demonstrate how by controlling properties of the drive, such as its frequency, one can tune some of the Floquet Fermi surfaces toward nonequilibrium Van Hove singularities without changing the electron density.

2.
Phys Rev Lett ; 126(19): 197402, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34047609

ABSTRACT

The nonlinear shift current, also known as the bulk photovoltaic current generated by linearly polarized light, has long been known to be absent in crystals with inversion symmetry. Here we argue that a nonzero shift current in centrosymmetric crystals can be activated by a photon-drag effect. Photon-drag shift current proceeds from a "shift current dipole" (a geometric quantity characterizing interband transitions) and manifests a purely transverse response in centrosymmetric crystals. This transverse nature proceeds directly from the shift-vector's pseudovector nature under mirror operation and underscores its intrinsic geometric origin. Photon-drag shift current can be greatly enhanced by coupling to polaritons and provides a new and sensitive tool to interrogate the subtle interband coherences of materials with inversion symmetry previously thought to be inaccessible via photocurrent probes.

3.
Sci Adv ; 5(10): eaax6550, 2019 10.
Article in English | MEDLINE | ID: mdl-31667347

ABSTRACT

Quantum oscillations provide a notable visualization of the Fermi surface of metals, including associated geometrical phases such as Berry's phase, that play a central role in topological quantum materials. Here we report the existence of a new quantum oscillation phase shift in a multiband system. In particular, we study the ABA-trilayer graphene, the band structure of which is composed of a weakly gapped linear Dirac band, nested within a quadratic band. We observe that Shubnikov-de Haas (SdH) oscillations of the quadratic band are shifted by a phase that sharply departs from the expected 2π Berry's phase and is inherited from the nontrivial Berry's phase of the linear band. We find this arises due to an unusual filling enforced constraint between the quadratic band and linear band Fermi surfaces. Our work indicates how additional bands can be exploited to tease out the effect of often subtle quantum mechanical geometric phases.

4.
Phys Rev Lett ; 122(6): 066602, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822071

ABSTRACT

In periodic media, despite the close relationship between geometrical effects in the bulk and topological surface states, the two are typically probed separately. We show that when beams in a Weyl medium reflect off an interface with a gapped medium, the trajectory is influenced by both bulk geometrical effects and the Fermi arc surface states. The reflected beam experiences a displacement, analogous to the Goos-Hänchen or Imbert-Fedorov shifts, that forms a half-vortex in the two-dimensional surface momentum space. The half-vortex is centered where the Fermi arc of the reflecting surface touches the Weyl cone, with the magnitude of the shift scaling as an inverse square root away from the touching point, and diverging at the touching point. This striking feature provides a way to use bulk transport to probe the topological characteristics of a Weyl medium.

5.
Phys Rev Lett ; 115(16): 166804, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26550894

ABSTRACT

We propose a light-induced spin Hall effect for interlayer exciton gas in monolayer MoSe2-WSe2 van der Waals heterostructure. By applying two infrared, spatially varying laser beams coupled to the exciton internal states, a spin-dependent gauge potential on the exciton center-of-mass motion is induced. This gauge potential deflects excitons in different spin states towards opposite directions, leading to a finite spin current but vanishing mass current. In the Hall bar geometry, the spin-dependent deflection gives rise to spin-dependent chiral edge states with spin-velocity locking. The spin current and chiral edge states of the excitons can be detected by spatially resolved photoluminescence spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...