Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
2.
CNS Neurosci Ther ; 30(4): e14518, 2024 04.
Article in English | MEDLINE | ID: mdl-37905680

ABSTRACT

AIMS: Peripheral immune cells infiltrating into the brain trigger neuroinflammation after an ischemic stroke. Partial immune cells reprogram their function for neural repair. Which immune cells promote ischemic brain recovery needs further identification. METHODS: We performed single-cell transcriptomic profiling of CD45high immune cells isolated from the ischemic hemisphere at subacute (5 days) and chronic (14 days) stages after ischemic stroke. RESULTS: A subset of phagocytic macrophages was associated with neuron projection regeneration and tissue remodeling. We also identified a unique type of T cells with highly expressed macrophage markers, including C1q, Apoe, Hexb, and Fcer1g, which showed high abilities in tissue remodeling, myelination regulation, wound healing, and anti-neuroinflammation. Moreover, natural killer cells decreased cytotoxicity and increased energy and metabolic function in the chronic stage after ischemic stroke. Two subgroups of neutrophils upregulated CCL signals to recruit peripheral immune cells and released CXCL2 to keep self-recruiting at the chronic stage. CONCLUSIONS: We identified subsets of peripheral immune cells that may provide potential therapeutic targets for promoting poststroke recovery.


Subject(s)
Ischemic Stroke , Stroke , Mice , Animals , Infarction, Middle Cerebral Artery/complications , Stroke/complications , Macrophages , Brain , Ischemic Stroke/complications
3.
Research (Wash D C) ; 6: 0287, 2023.
Article in English | MEDLINE | ID: mdl-38090608

ABSTRACT

Immunosenescence refers to the multifaceted and profound alterations in the immune system brought about by aging, exerting complex influences on the pathophysiological processes of diseases that manifest upon it. Using a combination of single-cell RNA sequencing, cytometry by time of flight, and various immunological assays, we investigated the characteristics of immunosenescence in the peripheral blood of aged mice and its impact on the cerebral immune environment after ischemic stroke. Our results revealed some features of immunosenescence. We observed an increase in neutrophil counts, concurrent with accelerated neutrophil aging, characterized by altered expression of aging-associated markers like CD62L and consequential changes in neutrophil-mediated immune functions. Monocytes/macrophages in aged mice exhibited enhanced antigen-presentation capabilities. T cell profiles shifted from naive to effector or memory states, with a specific rise in T helper 1 cells and T helper 17 cells subpopulations and increased regulatory T cell activation in CD4 T cells. Furthermore, regulatory CD8 T cells marked by Klra decreased with aging, while a subpopulation of exhausted-like CD8 T cells expanded, retaining potent immunostimulatory and proinflammatory functions. Critically, these inherent disparities not only persisted but were further amplified within the ischemic hemispheres following stroke. In summary, our comprehensive insights into the key attributes of peripheral immunosenescence provide a vital theoretical foundation for understanding not only ischemic strokes but also other age-associated diseases.

4.
Proc Natl Acad Sci U S A ; 120(25): e2300012120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307473

ABSTRACT

Aging compromises the repair and regrowth of brain vasculature and white matter during stroke recovery, but the underlying mechanisms remain elusive. To understand how aging jeopardizes brain tissue repair after stroke, we performed single-cell transcriptomic profiling of young adult and aged mouse brains at acute (3 d) and chronic (14 d) stages after ischemic injury, focusing a priori on the expression of angiogenesis- and oligodendrogenesis-related genes. We identified unique subsets of endothelial cells (ECs) and oligodendrocyte (OL) progenitors in proangiogenesis and pro-oligodendrogenesis phenotypic states 3 d after stroke in young mice. However, this early prorepair transcriptomic reprogramming was negligible in aged stroke mice, consistent with the impairment of angiogenesis and oligodendrogenesis observed during the chronic injury stages after ischemia. In the stroke brain, microglia and macrophages (MG/MΦ) may drive angiogenesis and oligodendrogenesis through a paracrine mechanism. However, this reparative cell-cell cross talk between MG/MΦ and ECs or OLs is impeded in aged brains. In support of these findings, permanent depletion of MG/MΦ via antagonism of the colony-stimulating factor 1 receptor resulted in remarkably poor neurological recovery and loss of poststroke angiogenesis and oligodendrogenesis. Finally, transplantation of MG/MΦ from young, but not aged, mouse brains into the cerebral cortices of aged stroke mice partially restored angiogenesis and oligodendrogenesis and rejuvenated sensorimotor function and spatial learning and memory. Together, these data reveal fundamental mechanisms underlying the age-related decay in brain repair and highlight MG/MΦ as effective targets for promoting stroke recovery.


Subject(s)
Endothelial Cells , Stroke , Animals , Mice , Brain , Macrophages , Sequence Analysis, RNA
5.
Neural Regen Res ; 18(11): 2413-2423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37282471

ABSTRACT

Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration. However, the role of B cells in ischemic stroke remains unclear. In this study, we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45. Macrophage-like B cells characterized by co-expression of B-cell and macrophage markers, showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes. Gene Ontology analysis found that the expression of genes associated with phagocytosis, including phagosome- and lysosome-related genes, was upregulated in macrophage-like B cells. The phagocytic activity of macrophage-like B cells was verified by immunostaining and three-dimensional reconstruction, in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia. Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways. Single-cell RNA sequencing showed that the transdifferentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP family to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage. Furthermore, this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury, Alzheimer's disease, and glioblastoma. Overall, these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain. These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke.

6.
Neurobiol Dis ; 179: 106063, 2023 04.
Article in English | MEDLINE | ID: mdl-36889482

ABSTRACT

Recent research highlights the function of regulatory T cells (Tregs) in white matter integrity in CNS diseases. Approaches that expand the number of Tregs have been utilized to improve stroke recovery. However, it remains unclear if Treg augmentation preserves white matter integrity early after stroke or promotes white matter repair. This study evaluates the effect of Treg augmentation on white matter injury and repair after stroke. Adult male C57/BL6 mice randomly received Treg or splenocyte (2 million, iv) transfer 2 h after transient (60 min) middle cerebral artery occlusion (tMCAO). Immunostaining showed improved white matter recovery after tMCAO in Treg-treated mice compared to mice received splenocytes. In another group of mice, IL-2/IL-2 antibody complexes (IL-2/IL-2Ab) or isotype IgG were administered (i.p) for 3 consecutive days starting 6 h after tMCAO, and repeated on day 10, 20 and 30. The IL-2/IL-2Ab treatment boosted the number of Tregs in blood and spleen and increased Treg infiltration into the ischemic brain. Longitudinal in vivo and ex vivo diffusion tensor imaging analysis revealed an increase in fractional anisotropy 28d and 35d, but not 14d, after stroke in IL-2/IL-2Ab-treated mice compared to isotype-treated mice, suggesting a delayed improvement in white matter integrity. IL-2/IL-2Ab also improved sensorimotor functions (rotarod test and adhesive removal test) 35d after stroke. There were correlations between white matter integrity and behavior performance. Immunostaining confirmed the beneficial effects of IL-2/IL-2Ab on white matter structures 35d after tMCAO. IL-2/IL-2Ab treatment starting as late as 5d after stroke still improved white matter integrity 21d after tMCAO, suggesting long-term salutary effects of Tregs on the late-stage tissue repair. We also found that IL-2/IL-2Ab treatment reduced the number of dead/dying OPCs and oligodendrocytes in the brain 3d after tMCAO. To confirm the direct effect of Tregs on remyelination, Tregs were cocultured with lysophosphatidyl choline (LPC)-treated organotypic cerebella. LPC exposure for 17 h induced demyelination in organotypic cultures, followed by gradual spontaneous remyelination upon removal of LPC. Co-culture with Tregs accelerated remyelination in organotypic cultures 7d after LPC. In conclusion, Boosting the number of Tregs protects oligodendrocyte lineage cells early after stroke and promotes long-term white matter repair and functional recovery. IL-2/IL-2Ab represents a feasible approach of Treg expansion for stroke treatment.


Subject(s)
Stroke , White Matter , Mice , Male , Animals , T-Lymphocytes, Regulatory , Diffusion Tensor Imaging , Interleukin-2/pharmacology , Mice, Inbred C57BL
7.
Opt Express ; 31(4): 6111-6131, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823876

ABSTRACT

A major challenge for matching-based disparity estimation from light field data is to prevent mismatches in occlusion and smooth regions. An effective matching window satisfying three characteristics: texture richness, disparity consistency, and anti-occlusion should be able to prevent mismatches to some extent. According to these characteristics, we propose matching entropy in the spatial domain of the light field to measure the amount of correct information in a matching window, which provides the criterion for matching window selection. Based on matching entropy regularization, we establish an optimization model for disparity estimation with a matching cost fidelity term. To find the optimum, we propose a two-step adaptive matching algorithm. First, the region type is adaptively determined to identify occluding, occluded, smooth, and textured regions. Then, the matching entropy criterion is used to adaptively select the size and shape of matching windows, as well as the visible viewpoints. The two-step process can reduce mismatches and redundant calculations by selecting effective matching windows. The experimental results on synthetic and real data show that the proposed method can effectively improve the accuracy of disparity estimation in occlusion and smooth regions and has strong robustness for different noise levels. Therefore, high-precision disparity estimation from 4D light field data is achieved.

8.
Nat Metab ; 4(12): 1756-1774, 2022 12.
Article in English | MEDLINE | ID: mdl-36536134

ABSTRACT

Microglia continuously survey the brain parenchyma and actively shift status following stimulation. These processes demand a unique bioenergetic programme; however, little is known about the metabolic determinants in microglia. By mining large datasets and generating transgenic tools, here we show that hexokinase 2 (HK2), the most active isozyme associated with mitochondrial membrane, is selectively expressed in microglia in the brain. Genetic ablation of HK2 reduced microglial glycolytic flux and energy production, suppressed microglial repopulation, and attenuated microglial surveillance and damage-triggered migration in male mice. HK2 elevation is prominent in immune-challenged or disease-associated microglia. In ischaemic stroke models, however, HK2 deletion promoted neuroinflammation and potentiated cerebral damages. The enhanced inflammatory responses after HK2 ablation in microglia are associated with aberrant mitochondrial function and reactive oxygen species accumulation. Our study demonstrates that HK2 gates both glycolytic flux and mitochondrial activity to shape microglial functions, changes of which contribute to metabolic abnormalities and maladaptive inflammation in brain diseases.


Subject(s)
Brain Ischemia , Stroke , Mice , Male , Animals , Microglia/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Stroke/genetics , Stroke/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Mitochondria/metabolism
9.
J Clin Invest ; 132(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35912857

ABSTRACT

Immunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution. The CXCR3/CXCL10 axis served as the brain-homing mechanism for CD8+ TRLs. Upon brain entry, CD8+ TRLs were reprogrammed to upregulate leukemia inhibitory factor (LIF) receptor, epidermal growth factor-like transforming growth factor (ETGF), and interleukin 10 (IL-10). LIF/LIF receptor interactions induced ETGF and IL-10 production in CD8+ TRLs. While IL-10 induction was important for the antiinflammatory effects of CD8+ TRLs, ETGF provided direct neuroprotection. Poststroke intravenous transfer of CD8+ TRLs reduced infarction, promoting long-term neurological recovery in young males or aged mice of both sexes. Thus, these unique CD8+ TRLs serve as early responders to rally defenses against stroke, offering fresh perspectives for clinical translation.


Subject(s)
Ischemic Stroke , Stroke , Animals , CD8-Positive T-Lymphocytes/metabolism , Female , Interleukin-10/genetics , Interleukin-10/metabolism , Male , Mice , Mice, Inbred C57BL , Neuroprotection , Stroke/genetics , Stroke/metabolism
10.
Transl Psychiatry ; 12(1): 275, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35821008

ABSTRACT

We investigated for the first time the proteomic profiles both in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of major depressive disorder (MDD) and bipolar disorder (BD) patients. Cryostat sections of DLPFC and ACC of MDD and BD patients with their respective well-matched controls were used for study. Proteins were quantified by tandem mass tag and high-performance liquid chromatography-mass spectrometry system. Gene Ontology terms and functional cluster alteration were analyzed through bioinformatic analysis. Over 3000 proteins were accurately quantified, with more than 100 protein expressions identified as significantly changed in these two brain areas of MDD and BD patients as compared to their respective controls. These include OGDH, SDHA and COX5B in the DLPFC in MDD patients; PFN1, HSP90AA1 and PDCD6IP in the ACC of MDD patients; DBN1, DBNL and MYH9 in the DLPFC in BD patients. Impressively, depending on brain area and distinct diseases, the most notable change we found in the DLPFC of MDD was 'suppressed energy metabolism'; in the ACC of MDD it was 'suppressed tissue remodeling and suppressed immune response'; and in the DLPFC of BD it was differentiated 'suppressed tissue remodeling and suppressed neuronal projection'. In summary, there are distinct proteomic changes in different brain areas of the same mood disorder, and in the same brain area between MDD and BD patients, which strengthens the distinct pathogeneses and thus treatment targets.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Aged , Gyrus Cinguli , Humans , Magnetic Resonance Imaging/methods , Profilins/metabolism , Proteomics
11.
Immun Ageing ; 19(1): 34, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879802

ABSTRACT

BACKGROUND: The immune cell compartment of the mammalian brain changes dramatically and peripheral T cells infiltrate the brain parenchyma during normal aging. However, the mechanisms underlying age-related T cell infiltration in the central nervous system remain unclear. RESULTS: Chronic inflammation and peripheral T cell infiltration were observed in the subventricular zone of aged mice. Cell-cell interaction analysis revealed that aged microglia released CCL3 to recruit peripheral CD8+ memory T cells. Moreover, the aged microglia shifted towards a pro-inflammation state and released TNF-α to upregulate the expression of VCAM1 and ICAM1 in brain venous endothelial cells, which promoted the transendothelial migration of peripheral T cells. In vitro experiment reveals that human microglia would also transit to a chemotactic phenotype when treated with CSF from the elderly. CONCLUSIONS: Our research demonstrated that microglia play an important role in the aging process of brain by shifting towards a pro-inflammation and chemotactic state. Aged microglia promote T cell infiltration by releasing chemokines and upregulating adhesion molecules on venous brain endothelial cells.

12.
Adv Sci (Weinh) ; 9(22): e2200045, 2022 08.
Article in English | MEDLINE | ID: mdl-35652265

ABSTRACT

Recent advances in single cell RNA sequencing (scRNA-seq) empower insights into cell-cell crosstalk within specific tissues. However, customizable data analysis tools that decipher intercellular communication from gene expression in association with biological functions are lacking. The authors have developed InterCellDB, a platform that allows a user-defined analysis of intercellular communication using scRNA-seq datasets in combination with protein annotation information, including cellular localization and functional classification, and protein interaction properties. The application of InterCellDB in tumor microenvironment research is exemplified using two independent scRNA-seq datasets from human and mouse and it is demonstrated that InterCellDB-inferred cell-cell interactions and ligand-receptor pairs are experimentally valid.


Subject(s)
Data Analysis , Single-Cell Analysis , Animals , Databases, Factual , Humans , Mice , Sequence Analysis, RNA , Tumor Microenvironment
13.
J Inflamm Res ; 14: 6813-6831, 2021.
Article in English | MEDLINE | ID: mdl-34924766

ABSTRACT

PURPOSE: Age-related increase in myelin loss may be responsible for brain atrophy, and the mechanism is not completely understood. We aim to comprehensively delineate oligodendrocyte heterogeneity in young and aged mice and to reveal the underlying mechanism for myelin loss during aging. METHODS: Diffusion tensor imaging and immunofluorescent staining were performed to verify the demyelination in the aged brains of both rodents and human. Further, the single-cell RNA sequencing data of all brain cells from young and aged mice were deeply analyzed to identify the subsets of oligodendrocyte lineage cells. Cell-to-cell interaction analysis was performed to detect the mechanism of observed changes in oligodendrocyte generation. RESULTS: Oligodendrocytes were observed to up-regulate several senescence associated genes in aged brain. Four clusters of oligodendrocyte precursor cells (OPCs) were identified in both young and aged brains. The number of those OPCs in basal state was significantly increased, while the OPCs in the procedure of differentiation were immensely decreased in aged brain. Furthermore, it was identified that activated microglia in the aged brain released inflammatory factors to suppress OPC differentiation. Stat1 might be a potential target to transform senescent microglia into tissue repair type to promote oligodendrocyte generation. CONCLUSION: These results provided a perspective on how age activated microglia could impede remyelination and might give a new therapeutic target for age-related remyelinating diseases.

14.
Aging Dis ; 12(8): 2125-2139, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34881090

ABSTRACT

Senescence-associated alterations of microglia have only recently been appreciated in the aged brain. Although our previous study has reported chronic inflammation in aged microglia, the mechanism remains poorly understood. Here, we performed morphological detection and transcriptomic analysis of aged microglia at the single cell level. Aged mice showed a large quantity and a large body volume of microglia in the brain. Six subgroups of microglia with unique function were identified by single cell RNA sequencing. Three out of six subgroups showed dramatic variations in microglia between aged and young mice. A unique type of highly-activated microglia (HAM) was observed in aged mice only, with specific expression of several markers, including Lpl, Lgals3, Cst7, and Cd74. Gene clusters with functional implications in cell survival, energy metabolism, and immuno-inflammatory responses were markedly activated in HAM. Mechanistically, neuron-released Mif, acting through Cd74 receptor in HAM, promoted the immunochemotactic activity of microglia, which then triggered immuno-inflammatory responses in aged brains. These findings may reveal new targets for reducing age-related brain inflammation to maintain brain health.

15.
Front Aging Neurosci ; 13: 645649, 2021.
Article in English | MEDLINE | ID: mdl-34276335

ABSTRACT

Microglia-mediated neuroinflammatory response in the early brain injury after subarachnoid hemorrhage (SAH) has been reported to have an impact on progress, and the mechanism is not completely understood. Here, we performed genome-wide transcriptome analysis of microglia purified from damaged hemisphere of adult mice at 3 days after SAH or sham operation. Robust transcriptional changes were observed between SAH-induced and healthy microglia, indicating rapid activation of microglia after suffering from SAH. We identified 1576 differentially expressed genes (DEGs; 928 upregulated and 648 downregulated) in SAH-induced microglia compared with sham microglia, representing a strong alteration of the genome (6.85% of total ∼23,000 genes). Functional enrichment of these DEGs indicated that cell division, inflammatory response, cytokine production, and leukocyte chemotaxis were strongly activated in SAH-induced microglia. Moreover, we identified and proved that the TLR2/IRF7 signaling axis was involved in the regulation of this microglia-mediated inflammation in SAH mice by performing flow cytometry and immunofluorescence. Together, these results provided a perspective of microglia-mediated neuroinflammatory response in the early stage of SAH and might give a new therapeutic target for SAH.

16.
Immunity ; 54(7): 1527-1542.e8, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34015256

ABSTRACT

The precise mechanisms underlying the beneficial effects of regulatory T (Treg) cells on long-term tissue repair remain elusive. Here, using single-cell RNA sequencing and flow cytometry, we found that Treg cells infiltrated the brain 1 to 5 weeks after experimental stroke in mice. Selective depletion of Treg cells diminished oligodendrogenesis, white matter repair, and functional recovery after stroke. Transcriptomic analyses revealed potent immunomodulatory effects of brain-infiltrating Treg cells on other immune cells, including monocyte-lineage cells. Microglia depletion, but not T cell lymphopenia, mitigated the beneficial effects of transferred Treg cells on white matter regeneration. Mechanistically, Treg cell-derived osteopontin acted through integrin receptors on microglia to enhance microglial reparative activity, consequently promoting oligodendrogenesis and white matter repair. Increasing Treg cell numbers by delivering IL-2:IL-2 antibody complexes after stroke improved white matter integrity and rescued neurological functions over the long term. These findings reveal Treg cells as a neurorestorative target for stroke recovery.


Subject(s)
Brain Ischemia/immunology , Ischemic Stroke/immunology , Microglia/immunology , Osteopontin/immunology , Recovery of Function/immunology , T-Lymphocytes, Regulatory/immunology , White Matter/immunology , Animals , Disease Models, Animal , Interleukin-2/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL
17.
J Neuroinflammation ; 18(1): 43, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588866

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) can induce excessive accumulation of reactive oxygen species (ROS) that may subsequently cause severe white matter injury. The process of oligodendrocyte progenitor cell (OPC) differentiation is orchestrated by microglia and astrocytes, and ROS also drives the activation of microglia and astrocytes. In light of the potent ROS scavenging capacity of ceria nanoparticles (CeNP), we aimed to investigate whether treatment with CeNP ameliorates white matter injury by modulating ROS-induced microglial polarization and astrocyte alteration. METHODS: ICH was induced in vivo by collagenase VII injection. Mice were administered with PLX3397 for depleting microglia. Primary microglia and astrocytes were used for in vitro experiments. Transmission electron microscopy analysis and immunostaining were performed to verify the positive effects of CeNP in remyelination and OPC differentiation. Flow cytometry, real-time polymerase chain reaction, immunofluorescence and western blotting were used to detect microglia polarization, astrocyte alteration, and the underlying molecular mechanisms. RESULTS: CeNP treatment strongly inhibited ROS-induced NF-κB p65 translocation in both microglia and astrocytes, and significantly decreased the expression of M1 microglia and A1 astrocyte. Furthermore, we found that CeNP treatment promoted remyelination and OPC differentiation after ICH, and such effects were alleviated after microglial depletion. Interestingly, we also found that the number of mature oligodendrocytes was moderately increased in ICH + CeNP + PLX3397-treated mice compared to the ICH + vehicle + PLX3397 group. Therefore, astrocytes might participate in the pathophysiological process. The subsequent phagocytosis assay indicated that A1 astrocyte highly expressed C3, which could bind with microglia C3aR and hinder microglial engulfment of myelin debris. This result further replenished the feedback mechanism from astrocytes to microglia. CONCLUSION: The present study reveals a new mechanism in white matter injury after ICH: ICH induces M1 microglia and A1 astrocyte through ROS-induced NF-κB p65 translocation that hinders OPC maturation. Subsequently, A1 astrocytes inhibit microglial phagocytosis of myelin debris via an astrocytic C3-microglial C3aR axis. Polyethylene glycol-CeNP treatment inhibits this pathological process and ultimately promotes remyelination. Such findings enlighten us that astrocytes and microglia should be regarded as a functional unit in future works.


Subject(s)
Astrocytes/drug effects , Cerebral Hemorrhage/drug therapy , Microglia/drug effects , Nanoparticles/administration & dosage , Remyelination/drug effects , White Matter/drug effects , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Cells, Cultured , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerium/administration & dosage , Female , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Remyelination/physiology , White Matter/metabolism , White Matter/pathology
18.
J Neuroinflammation ; 18(1): 2, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33402181

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/macrophage physiology. However, its function in regulating the innate immune response and microglial/macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI. METHODS: The controlled cortical impact (CCI) mouse model was employed. Mer siRNA was intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed. RESULTS: Mer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer activation. CONCLUSIONS: Mer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation, and may be considered as a potential target for therapeutic intervention in TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Cell Polarity/physiology , Inflammation Mediators/metabolism , Macrophages/metabolism , Microglia/metabolism , c-Mer Tyrosine Kinase/biosynthesis , Animals , Brain Injuries, Traumatic/prevention & control , Female , Inflammation Mediators/antagonists & inhibitors , Macrophage Activation/physiology , Male , Mice , Mice, Inbred C57BL
19.
Drug Des Devel Ther ; 14: 2573-2584, 2020.
Article in English | MEDLINE | ID: mdl-32753840

ABSTRACT

BACKGROUND: This study sought to investigate a novel effect of melatonin in reducing brain injury in an in vivo hyperglycemic intracerebral hemorrhage (ICH) model and further explore the mechanisms of protection. METHODS: Hyperglycemia ICH was induced in Sprague-Dawley rats by streptozocin injection followed by autologous blood injection into the striatum. A combined approach including RNA-specific depletion, electron microscopy, magnetic resonance, Western blots, and immunohistological staining was applied to quantify the brain injuries after ICH. RESULTS: Hyperglycemia resulted in enlarged hematoma volume, deteriorated brain edema, and aggravated neuronal mitochondria damage 3 days after ICH. Post-treatment with melatonin 2 hours after ICH dose-dependently improved neurological behavioral performance lasting out to 14 days after ICH. This improved neurological function was associated with enhanced structural and functional integrity of mitochondria. Mechanistic studies revealed that melatonin alleviated mitochondria damage in neurons via activating the PPARδ/PGC-1α pathway. Promisingly, melatonin treatment delayed until 6 hours after ICH still reduced brain edema and improved neurological functions. Melatonin supplementation reduces neuronal damage after hyperglycemic ICH by alleviating mitochondria damage in a PPARδ/PGC-1α-dependent manner. CONCLUSION: Melatonin may represent a therapeutic strategy with a wide therapeutic window to reduce brain damage and improve long-term recovery after ICH.


Subject(s)
Cerebral Hemorrhage/drug therapy , Hyperglycemia/drug therapy , Melatonin/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Disease Models, Animal , Hyperglycemia/metabolism , Hyperglycemia/pathology , Injections, Intraperitoneal , Male , Melatonin/administration & dosage , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/administration & dosage , Rats , Rats, Sprague-Dawley
20.
J Cereb Blood Flow Metab ; 40(1_suppl): S49-S66, 2020 12.
Article in English | MEDLINE | ID: mdl-32438860

ABSTRACT

Senescence-associated alterations in microglia may have profound impact on cerebral homeostasis and stroke outcomes. However, the lack of a transcriptome-wide comparison between young and aged microglia in the context of ischemia limits our understanding of aging-related mechanisms. Herein, we performed RNA sequencing analysis of microglia purified from cerebral hemispheres of young adult (10-week-old) and aged (18-month-old) mice five days after distal middle cerebral artery occlusion or after sham operation. Considerable transcriptional differences were observed between young and aged microglia in healthy brains, indicating heightened chronic inflammation in aged microglia. Following stroke, the overall transcriptional activation was more robust (>13-fold in the number of genes upregulated) in young microglia than in aged microglia. Gene clusters with functional implications in immune inflammatory responses, immune cell chemotaxis, tissue remodeling, and cell-cell interactions were markedly activated in microglia of young but not aged stroke mice. Consistent with the genomic profiling predictions, post-stroke cerebral infiltration of peripheral immune cells was markedly decreased in aged mice compared to young mice. Moreover, post-ischemic aged microglia demonstrated reduced interaction with neighboring neurons and diminished polarity toward the infarct lesion. These alterations in microglial gene response and behavior may contribute to aging-driven vulnerability and poorer recovery after ischemic stroke.


Subject(s)
Brain Ischemia/physiopathology , Genomics/methods , Microglia/metabolism , Transcriptome/genetics , Aged , Animals , Disease Models, Animal , Flow Cytometry , Humans , Male , Mice , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...