Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38844340

ABSTRACT

BACKGROUND: There is a need for biomarkers of disease progression and therapeutic response in multiple sclerosis (MS). This study aimed to identify cerebrospinal fluid (CSF) lipids that differentiate MS from other neuroinflammatory conditions and correlate with Expanded Disability Status Scale (EDSS) scores, gadolinium-enhancing lesions or inflammatory mediators. METHODS: Lipids and inflammatory cytokines/chemokines were quantified with liquid chromatography-tandem mass spectrometry and multiplex ELISA, respectively, in CSF from people with untreated MS, neuromyelitis optica spectrum disorder (NMOSD), other inflammatory neurological diseases and non-inflammatory neurological diseases (NIND). Analytes were compared between groups using analysis of variance, and correlations were assessed with Pearson's analysis. RESULTS: Twenty-five sphingolipids and four lysophosphatidylcholines were significantly higher in NMOSD compared with MS and NIND cases, whereas no lipids differed significantly between MS and NIND. A combination of three sphingolipids differentiated NMOSD from MS with the area under the curve of 0.92 in random forest models. Ninety-four lipids, including those that differentiated NMOSD from MS, were positively correlated with macrophage migration inhibitory factor (MIF) and 37 lipids were positively correlated with CSF protein in two independent MS cohorts. EDSS was inversely correlated with cholesterol ester CE(16:0) in both MS cohorts. In contrast, MIF and soluble triggering receptor expressed on myeloid cells 2 were positively associated with EDSS. CONCLUSIONS: CSF sphingolipids are positively correlated with markers of neuroinflammation and differentiate NMOSD from MS. The inverse correlation between EDSS and CE(16:0) levels may reflect poor clearance of cholesterol released during myelin break-down and warrants further investigation as a biomarker of therapeutic response.

2.
Cells ; 11(17)2022 08 28.
Article in English | MEDLINE | ID: mdl-36078077

ABSTRACT

Hyperlipidemia and type 2 diabetes (T2D) are major risk factors for atherosclerosis. Apoe-deficient (Apoe-/-) mice on certain genetic backgrounds develop hyperlipidemia, atherosclerosis, and T2D when fed a Western diet. Here, we sought to dissect phenotypic and genetic relationships of blood lipids and glucose with atherosclerotic plaque formation when the vasculature is exposed to high levels of cholesterol and glucose. Male F2 mice were generated from LP/J and BALB/cJ Apoe-/- mice and fed a Western diet for 12 weeks. Three significant QTL Ath51, Ath52 and Ath53 on chromosomes (Chr) 3 and 15 were mapped for atherosclerotic lesions. Ath52 on proximal Chr15 overlapped with QTL for plasma glucose, non-HDL cholesterol, and triglyceride. Atherosclerotic lesion sizes showed significant correlations with fasting, non-fasting glucose, non-fasting triglyceride, and body weight but no correlation with HDL, non-HDL cholesterol, and fasting triglyceride levels. Ath52 for atherosclerosis was down-graded from significant to suggestive level after adjustment for fasting, non-fasting glucose, and non-fasting triglyceride but minimally affected by HDL, non-HDL cholesterol, and fasting triglyceride. Adjustment for body weight suppressed Ath52 but elevated Ath53 on distal Chr15. These results demonstrate phenotypic and genetic connections of blood glucose and triglyceride with atherosclerosis, and suggest a more prominent role for blood glucose than cholesterol in atherosclerotic plaque formation of hyperlipidemic mice.


Subject(s)
Atherosclerosis , Blood Glucose , Cholesterol , Diabetes Mellitus, Type 2 , Hyperlipidemias , Plaque, Atherosclerotic , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Blood Glucose/metabolism , Body Weight/genetics , Cholesterol/metabolism , Crosses, Genetic , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Hyperlipidemias/complications , Hyperlipidemias/genetics , Male , Mice , Mice, Inbred Strains , Plaque, Atherosclerotic/genetics , Quantitative Trait Loci , Triglycerides
3.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682864

ABSTRACT

Dyslipidemia is considered a risk factor for type 2 diabetes (T2D), yet studies with statins and candidate genes suggest that circulating lipids may protect against T2D development. Apoe-null (Apoe-/-) mouse strains develop spontaneous dyslipidemia and exhibit a wide variation in susceptibility to diet-induced T2D. We thus used Apoe-/- mice to elucidate phenotypic and genetic relationships of circulating lipids with T2D. A male F2 cohort was generated from an intercross between LP/J and BALB/cJ Apoe-/- mice and fed 12 weeks of a Western diet. Fasting, non-fasting plasma glucose, and lipid levels were measured and genotyping was performed using miniMUGA arrays. We uncovered a major QTL near 60 Mb on chromosome 15, Nhdlq18, which affected non-HDL cholesterol and triglyceride levels under both fasting and non-fasting states. This QTL was coincident with Bglu20, a QTL that modulates fasting and non-fasting glucose levels. The plasma levels of non-HDL cholesterol and triglycerides were closely correlated with the plasma glucose levels in F2 mice. Bglu20 disappeared after adjustment for non-HDL cholesterol or triglycerides. These results demonstrate a causative role for dyslipidemia in T2D development in mice.


Subject(s)
Diabetes Mellitus, Type 2 , Dyslipidemias , Hyperlipidemias , Animals , Apolipoproteins E/genetics , Blood Glucose , Cholesterol , Crosses, Genetic , Diabetes Mellitus, Type 2/genetics , Dyslipidemias/genetics , Humans , Hyperlipidemias/genetics , Male , Mice , Mice, Knockout , Quantitative Trait Loci , Triglycerides
4.
Physiol Genomics ; 54(5): 166-176, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35384748

ABSTRACT

Atherosclerosis in the carotid artery is a major cause of ischemic stroke and has a strong genetic component. The aim of this study was to identify genetic factors contributing to carotid atherosclerosis. One hundred fifty-four female F2 mice were generated from an intercross between LP/J and BALB/cJ Apoe-null (Apoe-/-) mice and fed 12 wk of Western diet. Atherosclerotic lesions, body weight, and coat color were measured and genotyping was performed using miniMUGA genotyping arrays. A significant quantitative trait locus (QTL) on chromosome (Chr) 7, named Cath20, and five suggestive QTL on Chr 6, 12, 13, 15, and X were identified for carotid lesions. Three significant QTL, Bwfq2, Bw1n, Bwtq6, on Chr 2, 7, and 15 were identified for body weight. Two significant QTL, Chop2 and Albc2, on Chr 4 and 7 were identified for coat color, with Tyr, encoding tyrosinase, being the causal gene of Albc2. Cath20 overlapped with or was close to QTL Bw1n and Albc2 on Chr7. Carotid lesion sizes were significantly correlated with body weight and graded coat color in F2 mice. Cath20 on Chr7 disappeared after adjustment for coat color but remained after adjustment for body weight. Tyr was abundantly expressed in atherosclerotic lesions. These results demonstrate genetic connections of carotid atherosclerosis with body weight and coat color in hyperlipidemic mice and suggest a potential role for Tyr in carotid atherosclerosis.


Subject(s)
Atherosclerosis , Carotid Artery Diseases , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Body Weight/genetics , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Crosses, Genetic , Female , Mice , Mice, Inbred C57BL
5.
Genes (Basel) ; 13(3)2022 03 14.
Article in English | MEDLINE | ID: mdl-35328064

ABSTRACT

Type 2 diabetes (T2D) is a major risk for atherosclerosis and its complications. Apoe-null (Apoe-/-) mouse strains exhibit a wide range of variations in susceptibility to T2D and carotid atherosclerosis, with the latter being a major cause of ischemic stroke. To identify genetic connections between T2D and carotid atherosclerosis, 145 male F2 mice were generated from LP/J and BALB/cJ Apoe-/- mice and fed 12 weeks of a Western diet. Atherosclerotic lesions in the carotid arteries, fasting, and non-fasting plasma glucose levels were measured, and genotyping was performed using miniMUGA arrays. Two significant QTL (quantitative trait loci) on chromosomes (Chr) 6 and 15 were identified for carotid lesions. The Chr15 QTL coincided precisely with QTL Bglu20 for fasting and non-fasting glucose levels. Carotid lesion sizes showed a trend toward correlation with fasting and non-fasting glucose levels in F2 mice. The Chr15 QTL for carotid lesions was suppressed after excluding the influence from fasting or non-fasting glucose. Likely candidate genes for the causal association were Tnfrsf11b, Deptor, and Gsdmc2. These results demonstrate a causative role for hyperglycemia in the development of carotid atherosclerosis in hyperlipidemic mice.


Subject(s)
Atherosclerosis , Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Atherosclerosis/genetics , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Female , Glucose , Hyperglycemia/complications , Hyperglycemia/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout, ApoE
6.
Am J Med Sci ; 362(3): 297-302, 2021 09.
Article in English | MEDLINE | ID: mdl-34197739

ABSTRACT

BACKGROUND: Glucometers are widely used in animal research due to simplicity and ease of utilization, but their accuracy in blood glucose assessment for hyperlipidemic mice is unknown. METHODS: Here, we compared blood glucose levels measured by a glucometer with plasma glucose levels measured by a standard enzymatic assay for 325 genetically diverse F2 mice derived from LP and BALB/c (BALB) Apoe-/- mice. Non-fasting glucose levels were measured before initiation of a Western diet and after 11 weeks on the diet. RESULTS: On chow diet, lab-measured plasma glucose levels were 279.5 ± 42.6 mg/dl (mean ± SD), while blood glucose values measured by glucometer were 138.7 ± 16.6 mg/dl. The two measures had no correlation (R2 = 0.006, p = 0.167). On the Western diet, plasma glucose levels rose to 351.1 ± 121.6 mg/dl, while glucometer-measured blood glucose fell to 128.7 ± 27.9 mg/dl. The two measures showed a moderate correlation (R2 = 0.111, p = 3.1E-9). Lab-measured plasma glucose showed strong positive correlations with plasma triglyceride and non-high-density lipoprotein cholesterol levels, while glucometer-measured blood glucose showed an inverse correlation with non-high-density lipoprotein levels on the chow diet. CONCLUSIONS: Our results indicate that hyperlipidemia affects the accuracy of glucometers in measuring blood glucose levels of mice.


Subject(s)
Blood Chemical Analysis/standards , Blood Glucose/genetics , Blood Glucose/metabolism , Genetic Variation/physiology , Hyperlipidemias/blood , Hyperlipidemias/genetics , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Knockout
7.
G3 (Bethesda) ; 10(12): 4679-4689, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33109727

ABSTRACT

Atherosclerosis is a polygenic disorder that often affects multiple arteries. Carotid arteries are common sites for evaluating subclinical atherosclerosis, and aortic root is the standard site for quantifying atherosclerosis in mice. We compared genetic control of atherosclerosis between the two sites in the same cohort derived from two phenotypically divergent Apoe-null (Apoe-/-) mouse strains. Female F2 mice were generated from C57BL/6 (B6) and C3H/He (C3H) Apoe-/- mice and fed 12 weeks of Western diet. Atherosclerotic lesions in carotid bifurcation and aortic root and plasma levels of fasting lipids and glucose were measured. 153 genetic markers across the genome were typed. All F2 mice developed aortic atherosclerosis, while 1/5 formed no or little carotid lesions. Genome-wide scans revealed 3 significant loci on chromosome (Chr) 1, Chr15, 6 suggestive loci for aortic atherosclerosis, 2 significant loci on Chr6, Chr12, and 6 suggestive loci for carotid atherosclerosis. Only 2 loci for aortic lesions showed colocalization with loci for carotid lesions. Carotid lesion sizes were moderately correlated with aortic lesion sizes (r = 0.303; P = 4.6E-6), but they showed slight or no association with plasma HDL, non-HDL cholesterol, triglyceride, or glucose levels among F2 mice. Bioinformatics analyses prioritized Cryge as a likely causal gene for Ath30, Cdh6 and Dnah5 as causal genes for Ath22 Our data demonstrate vascular site-specific effects of genetic factors on atherosclerosis in the same animals and highlight the need to extend studies of atherosclerosis to sites beyond aortas of mice.


Subject(s)
Atherosclerosis , Quantitative Trait Loci , Animals , Atherosclerosis/genetics , Female , Genetic Predisposition to Disease , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout
8.
J Chromatogr A ; 1569: 193-199, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30076005

ABSTRACT

In this study, we propose a novel approach for the determination of total dissolved nitrogen (TDN) in seawater combining high-precision isotope dilution GC-MS with persulfate digestion. A 2 mL sample aliquot was digested with an alkaline solution of persulfate to convert nitrogen containing compounds to nitrate. Digested samples were spiked with 15NO3- internal standard and treated with aqueous triethyloxonium to convert the analyte into volatile EtONO2. This derivative was readily separated from the matrix under gaseous form and could be sampled from the headspace before GC-MS analysis. The resulting chromatograms showed a stable flat baseline with EtONO2 as the only eluting peak (retention time 2.75 min on a DB 5.625 column). Such an approach provides specificity and obviates the shortcomings of current detection methods employed to analyze seawater samples after digestion with persulfate. In negative chemical ionization mode, the method reached a detection limit of 0.5 µmol/kg TDN (7 ng/g N) and could be applied to quantify seawater samples with 1-25 µmol/kg TDN. On the upper end of the range, quantitation could be repeated within 1%, whereas on a 6 µmol/kg TDN sample repeatability was 2.3% on eight measurements. The method was employed in two proficiency testing exercises providing results in agreement with consensus values. We investigated the impact of reagent blank and we implemented a blank-matching optimal design to account for such contribution. Finally, we performed a study on the yield of persulfate oxidation for organic and inorganic nitrogen compounds typically present in seawater. Whilst nitrite and ammonium are fully converted to nitrate, more complex organic molecules showed recoveries varying from 70% to 100%.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Nitrogen/analysis , Onium Compounds/chemistry , Seawater/chemistry , Sulfates/chemistry , Water/chemistry , Amino Acids/analysis , Calibration , Indicator Dilution Techniques , Limit of Detection , Nitrates/analysis , Nitrites/analysis , Peptides/analysis , Reference Standards , Solubility , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...