Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 31(6): 711-721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582955

ABSTRACT

BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.


Subject(s)
bcl-2 Homologous Antagonist-Killer Protein , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Humans , Apoptosis/drug effects , Cell Line, Tumor , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
2.
Cell Death Differ ; 29(9): 1757-1768, 2022 09.
Article in English | MEDLINE | ID: mdl-35279694

ABSTRACT

Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60. M60 mutants of BAK have reduced stability and elevated sensitivity to activation by BID, illustrating that M60, through its contacts with residues in helices α1, α5 and α6, is a linchpin stabilising the inert, monomeric structure of BAK. Our data demonstrate that BAK's α1-α2 loop is not a passive covalent connector between secondary structure elements, but a direct restraint on BAK's activation.


Subject(s)
Apoptosis , bcl-2 Homologous Antagonist-Killer Protein , Antibodies , Apoptosis/physiology , BH3 Interacting Domain Death Agonist Protein/metabolism , Mitochondrial Membranes/metabolism , Protein Structure, Secondary , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics
3.
Cell Death Differ ; 29(7): 1335-1348, 2022 07.
Article in English | MEDLINE | ID: mdl-35332309

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.


Subject(s)
Antineoplastic Agents , Ferroptosis , Glioblastoma , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Temozolomide/pharmacology , bcl-X Protein/metabolism
4.
Blood ; 137(20): 2721-2735, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33824975

ABSTRACT

Selective targeting of BCL-2 with the BH3-mimetic venetoclax has been a transformative treatment for patients with various leukemias. TP-53 controls apoptosis upstream of where BCL-2 and its prosurvival relatives, such as MCL-1, act. Therefore, targeting these prosurvival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL-2 has produced clinically relevant responses in blood cancers with aberrant TP-53. However, in our study, TP53-mutated or -deficient myeloid and lymphoid leukemias outcompeted isogenic controls with intact TP-53, unless sufficient concentrations of BH3-mimetics targeting BCL-2 or MCL-1 were applied. Strikingly, tumor cells with TP-53 dysfunction escaped and thrived over time if inhibition of BCL-2 or MCL-1 was sublethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study revealed the key role of TP-53 in shaping long-term responses to BH3-mimetic drugs and reconciled the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia or acute myeloid leukemia. In contrast to BH3-mimetics targeting just BCL-2 or MCL-1 at doses that are individually sublethal, a combined BH3-mimetic approach targeting both prosurvival proteins enhanced lethality and durably suppressed the leukemia burden, regardless of TP53 mutation status. Our findings highlight the importance of using sufficiently lethal treatment strategies to maximize outcomes of patients with TP53-mutant disease. In addition, our findings caution against use of sublethal BH3-mimetic drug regimens that may enhance the risk of disease progression driven by emergent TP53-mutant clones.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Indolizines/pharmacology , Isoquinolines/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Morpholines/pharmacology , Neoplasm Proteins/physiology , Peptide Fragments/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Sulfonamides/pharmacology , Tumor Suppressor Protein p53/physiology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Apoptosis/physiology , Apoptosis Regulatory Proteins/physiology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , CRISPR-Cas Systems , Cell Line, Tumor , DNA Damage , Genes, p53 , Humans , Indolizines/therapeutic use , Interleukin-2 Receptor alpha Subunit/deficiency , Isoquinolines/therapeutic use , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Morpholines/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Oxidative Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Tumor Suppressor Protein p53/deficiency , Xenograft Model Antitumor Assays
5.
Cell Death Dis ; 11(4): 268, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327636

ABSTRACT

BAK and BAX, which drive commitment to apoptosis, are activated principally by certain BH3-only proteins that bind them and trigger major rearrangements. One crucial conformation change is exposure of their BH3 domain which allows BAK or BAX to form homodimers, and potentially to autoactivate other BAK and BAX molecules to ensure robust pore formation and cell death. Here, we test whether full-length BAK or mitochondrial BAX that are specifically activated by antibodies can then activate other BAK or BAX molecules. We found that antibody-activated BAK efficiently activated BAK as well as mitochondrial or cytosolic BAX, but antibody-activated BAX unexpectedly proved a poor activator. Notably, autoactivation by BAK involved transient interactions, as BAK and BAX molecules it activated could dissociate and homodimerize. The results suggest that BAK-driven autoactivation may play a substantial role in apoptosis, including recruitment of BAX to the mitochondria. Hence, directly targeting BAK rather than BAX may prove particularly effective in inhibiting unwanted apoptosis, or alternatively, inducing apoptosis in cancer cells.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis , Humans , Mice , Protein Folding
6.
Structure ; 26(10): 1346-1359.e5, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30122452

ABSTRACT

BAX and BAK are essential mediators of intrinsic apoptosis that permeabilize the mitochondrial outer membrane. BAX activation requires its translocation from cytosol to mitochondria where conformational changes cause its oligomerization. To better understand the critical step of translocation, we examined its blockade by mutation near the C terminus (P168G) or by antibody binding near the N terminus. Similarities in the crystal structures of wild-type and BAX P168G but significant other differences suggest that cytosolic BAX exists as an ensemble of conformers, and that the distribution of conformers within the ensemble determines the different functions of wild-type and mutant proteins. We also describe the structure of BAX in complex with an antibody, 3C10, that inhibits cytosolic BAX by limiting exposure of the membrane-associating helix α9, as does the P168G mutation. Our data for both means of BAX inhibition argue for an allosteric model of BAX regulation that derives from properties of the ensemble of conformers.


Subject(s)
Mutation , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/metabolism , Allosteric Regulation , Animals , Antibodies, Monoclonal/metabolism , Binding Sites , Crystallography, X-Ray , Cytosol/metabolism , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism , Humans , Ictaluridae/metabolism , Mice , Models, Molecular , Protein Conformation , bcl-2-Associated X Protein/genetics
7.
Elife ; 62017 02 06.
Article in English | MEDLINE | ID: mdl-28182867

ABSTRACT

During apoptosis, Bak and Bax undergo major conformational change and form symmetric dimers that coalesce to perforate the mitochondrial outer membrane via an unknown mechanism. We have employed cysteine labelling and linkage analysis to the full length of Bak in mitochondria. This comprehensive survey showed that in each Bak dimer the N-termini are fully solvent-exposed and mobile, the core is highly structured, and the C-termini are flexible but restrained by their contact with the membrane. Dimer-dimer interactions were more labile than the BH3:groove interaction within dimers, suggesting there is no extensive protein interface between dimers. In addition, linkage in the mobile Bak N-terminus (V61C) specifically quantified association between dimers, allowing mathematical simulations of dimer arrangement. Together, our data show that Bak dimers form disordered clusters to generate lipidic pores. These findings provide a molecular explanation for the observed structural heterogeneity of the apoptotic pore.


Subject(s)
Apoptosis , Mitochondria/physiology , Mitochondrial Membranes/metabolism , Protein Multimerization , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...