Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(1): 245-271, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38117951

ABSTRACT

Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.


Subject(s)
Antineoplastic Agents , Humans , Rats , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor
2.
Lipids Health Dis ; 22(1): 208, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031159

ABSTRACT

Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) is characterized by a violent cytokine storm-driven inflammation and is associated with a predisposition to severe disease. The treatment strategy for HTG-AP consists mainly of conventional symptomatic and lipid-lowering treatments. For early-stage HTG-AP, blood purification (BP) can rapidly and effectively reduce serum triglyceride and inflammatory cytokine levels, block the development of systemic inflammatory response syndrome, and improve patient outcomes. Currently, the primary modalities for BP in patients with HTG-AP include plasma exchange, hemoperfusion, and hemofiltration. When using BP to treat patients with HTG-AP, a comprehensive analysis incorporating the elevated lipid levels and severity of the patient's condition contributes to the selection of different treatment modes. Moreover, the timing of the treatment is also imperative. Early intervention is associated with a better prognosis for patients with HTG-AP requiring lipid-lowering treatment.


Subject(s)
Hyperlipidemias , Hypertriglyceridemia , Pancreatitis , Humans , Acute Disease , Hyperlipidemias/therapy , Hyperlipidemias/complications , Hypertriglyceridemia/complications , Hypertriglyceridemia/therapy , Lipids , Triglycerides , Retrospective Studies
3.
ACS Omega ; 8(37): 33658-33674, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744850

ABSTRACT

Bromodomain and extra-terminal domain (BET) proteins play an important role in epigenetic regulation and are linked to several diseases; therefore, they are interesting targets. BET has two bromodomains: bromodomain 1 (BD1) and BD2. Selective targeting of BD1 or BD2 may produce different activities and greater effects than pan-BD inhibitors. However, the selective mechanism of the specific core must be studied at the atomic level. This study determined the effectiveness of pyrrolopyridone analogues to selectively inhibit BD2 using a pan-BD inhibitor (ABBV-075) and a selective-BD2 inhibitor (ABBV-744). Molecular dynamics simulations and calculations of binding free energies were used to systematically study the selectivity of BD2 inhibition by the pyrrolopyridone analogues. Overall, the pyrrolopyridone analogue inhibitors targeting BD2 interacted mainly with the following amino acid pairs between bromodomain-containing protein 4 (BRD4)-BD1 and BRD4-BD2 complexes: I146/V439, N140/N433, D144/H437, P82/P375, V87/V380, D88/D381, and Y139/Y432. The pyrrolopyridone analogues targeting BRD4-BD2 were divided into five regions based on selectivity mechanism. These results suggest that the R3 and R5 regions of pyrrolopyridone analogues can be modified to improve the selectivity between BRD4-BD1 and BRD4-BD2. The selectivity of BD2 inhibition by pyrrolopyridone analogues can be used to design novel BD2 inhibitors based on a pyrrolopyridone core.

4.
Front Pharmacol ; 14: 1116098, 2023.
Article in English | MEDLINE | ID: mdl-37124223

ABSTRACT

Natural products are widely used for treating mitochondrial dysfunction-related diseases and cancers. Curcumin, a well-known natural product, can be potentially used to treat cancer. Human salt-induced kinase 3 (SIK3) is one of the target proteins for curcumin. However, the interactions between curcumin and human SIK3 have not yet been investigated in detail. In this study, we studied the binding models for the interactions between curcumin and human SIK3 using computational tools such as homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations. The open activity loop conformation of SIK3 with the ketoenol form of curcumin was the optimal binding model. The I72, V80, A93, Y144, A145, and L195 residues played a key role for curcumin binding with human SIK3. The interactions between curcumin and human SIK3 were also investigated using the kinase assay. Moreover, curcumin exhibited an IC50 (half-maximal inhibitory concentration) value of 131 nM, and it showed significant antiproliferative activities of 9.62 ± 0.33 µM and 72.37 ± 0.37 µM against the MCF-7 and MDA-MB-23 cell lines, respectively. This study provides detailed information on the binding of curcumin with human SIK3 and may facilitate the design of novel salt-inducible kinases inhibitors.

5.
Front Pharmacol ; 14: 1154654, 2023.
Article in English | MEDLINE | ID: mdl-37234717

ABSTRACT

CDK4/6 plays a crucial role in various cancers and is an effective anticancer drug target. However, the gap between clinical requirements and approved CDK4/6 drugs is unresolved. Thus, there is an urgent need to develop selective and oral CDK4/6 inhibitors, particularly for monotherapy. Here, we studied the interaction between abemaciclib and human CDK6 using molecular dynamics simulations, binding free energy calculations, and energy decomposition. V101 and H100 formed stable hydrogen bonds with the amine-pyrimidine group, and K43 interacted with the imidazole ring via an unstable hydrogen bond. Meanwhile, I19, V27, A41, and L152 interacted with abemaciclib through π-alkyl interactions. Based on the binding model, abemaciclib was divided into four regions. With one region modification, 43 compounds were designed and evaluated using molecular docking. From each region, three favorable groups were selected and combined with each other to obtain 81 compounds. Among them, C2231-A, which was obtained by removing the methylene group from C2231, showed better inhibition than C2231. Kinase profiling revealed that C2231-A showed inhibitory activity similar to that of abemaciclib; additionally, C2231-A inhibited the growth of MDA-MB-231 cells to a greater extent than did abemaciclib. Based on molecular dynamics simulation, C2231-A was identified as a promising candidate compound with considerable inhibitory effects on human breast cancer cell lines.

6.
Bioorg Chem ; 137: 106539, 2023 08.
Article in English | MEDLINE | ID: mdl-37163811

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disease with a median survival of only 3-5 years. Due to the lack of effective therapy, IPF threatens human health. Recently, increasing reports have indicated that Rho-associated coiled-coil protein kinases (ROCKs) play important roles in the development of IPF and might represent a novel target for the treatment of IPF. Herein, a new series of selective ROCK2 inhibitors based on indoline were designed and synthesized. Structural modification resulted in optimized compound 9b with an IC50 value of 6 nM against ROCK2 and the inhibition of collagen gel contraction. Cellular assays demonstrated that 9b could significantly suppress the expression of collagen I and α-SMA, and inhibited ROCK signaling pathway. Oral administration of compound 9b (10 mg/kg) exerted more significant anti-pulmonary fibrosis effects than nintedanib (100 mg/kg) and KD025 (100 mg/kg) in a bleomycin-induced IPF rat model, suggesting that 9b could serve as a potential lead compound for the treatment of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Rats , Animals , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Fibrosis , Collagen/adverse effects , Collagen Type I , rho-Associated Kinases
7.
Eur J Med Chem ; 256: 115469, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37178481

ABSTRACT

Salt-inducible kinases (SIKs) play a crucial role in inflammation process, acting as molecular switches that regulate the transformation of M1/M2 macrophages. HG-9-91-01 is a SIKs inhibitor with potent inhibitory activity against SIKs in the nanomolar range. However, its poor drug-like properties, including a rapid elimination rate, low in vivo exposure and high plasma protein binding rate, have hindered further research and clinical application. To improve the drug-like properties of HG-9-91-01, a series of pyrimidine-5-carboxamide derivatives were designed and synthesized through a molecular hybridization strategy. The most promising compound 8h was obtained with favorable activity and selectivity on SIK1/2, excellent metabolic stability in human liver microsome, enhanced in vivo exposure and suitable plasma protein binding rate. Mechanism research showed that compound 8h significantly up-regulated the expression of anti-inflammatory cytokine IL-10 and reduced the expression of pro-inflammatory cytokine IL-12 in bone marrow-derived macrophages. Furthermore, it significantly elevated expression of cAMP response element-binding protein (CREB) target genes IL-10, c-FOS and Nurr77. Compound 8h also induced the translocation of CREB-regulated transcriptional coactivator 3 (CRTC3) and elevated the expression of LIGHT, SPHK1 and Arginase 1. Additionally, compound 8h demonstrated excellent anti-inflammatory effects in a DSS-induced colitis model. Generally, this research indicated that compound 8h has the potential to be developed as an anti-inflammatory drug candidate.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-10 , Humans , Cytokines/metabolism , Inflammatory Bowel Diseases/drug therapy , Protein Serine-Threonine Kinases , Pyrimidines/chemistry
8.
J Biol Eng ; 17(1): 32, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106420

ABSTRACT

BACKGROUND: Non-involuting congenital hemangiomas (NICHs) are fully formed vascular tumors at birth with distinctive clinical, radiologic, and histopathological profiles. In the literature, there is no effective therapy strategy for patients with NICH except surgery. Currently, no cell line or animal model exists for studying the mechanism of NICH and drug validation. We plan to construct a new strategy by constructing NICH organoids for further study. RESULT: Here, we report a novel NICH organoid system construction and optimization process. Both HE and immunohistological staining exactly matched NICH tissue. We further performed transcriptome analysis to elucidate the characteristics of NICH organoids. Both NICH tissue and NICH organoids manifested similar trends in download sites. NICH organoids display novel features to new cells derived from organoids and show spectacular multiplication capacity. In the preliminary verification, we found that cells splitting from NICH organoids were human endothelial cells. Drug validation demonstrated that trametinib, sirolimus, and propranolol showed no inhibitory effects on NICH organoids. CONCLUSION: Our data show that this new NICH-derived organoid faithfully captured the features of this rare vascular tumor. Our study will boost further research on the mechanism of NICH and drug filtering in the future.

9.
Eur J Med Chem ; 250: 115168, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36780830

ABSTRACT

Autophagy inducers are promising agents for treating certain medical illnesses, while no safe autophagy inducers are in clinical applications. Cdc2-like kinase 1 (Clk1) inhibitors induce autophagy efficiently; however, most Clk1 inhibitors lack selectivity, especially against Dyrk1A kinase. Herein, we report a series of 1H-pyrrolo[2,3-b]pyridin-5-amine derivatives as novel Clk1 inhibitors. Through detailed structural modification and structure-activity relationship studies, compound 10ad shows potent and selective inhibition for Clk1, with an IC50 value of 5 nM and over 300-fold selectivity for Dyrk1A. Related kinase screening also validates the selectivity of compound 10ad. Furthermore, compound 10ad potently induces autophagy in vitro and exhibits significant hepatoprotective effects in the acute liver injury model induced by acetaminophen (paracetamol). In general, due to the excellent potency and selectivity, compound 10ad was worth further investigation in the treatment of autophagy-related diseases.


Subject(s)
Acetaminophen , Protein Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Acetaminophen/pharmacology , Liver , Autophagy
10.
J Biomol Struct Dyn ; 41(18): 8654-8670, 2023.
Article in English | MEDLINE | ID: mdl-36281703

ABSTRACT

Focal adhesion kinase (FAK) belongs to the nonreceptor tyrosine kinases, which selectively phosphorylate tyrosine residues on substrate proteins. FAK is associated with bladder, esophageal, gastric, neck, breast, ovarian and lung cancers. Thus, FAK has been considered as a potential target for tumor treatment. Currently, there are six adenosine triphosphate (ATP)-competitive FAK inhibitors tested in clinical trials but no approved inhibitors targeting FAK. Defactinib (VS-6063) is a second-generation FAK inhibitor with an IC50 of 0.6 nM. The binding model of VS-6063 with FAK may provide a reference model for developing new antitumor FAK-targeting drugs. In this study, the VS-6063/FAK binding model was constructed using ensemble docking and molecular dynamics simulations. Furthermore, the molecular mechanics/generalized Born (GB) surface area (MM/GBSA) method was employed to estimate the binding free energy between VS-6063 and FAK. The key residues involved in VS-6063/FAK binding were also determined using per-residue energy decomposition analysis. Based on the binding model, VS-6063 could be separated into seven regions to enhance its binding affinity with FAK. Meanwhile, 60 novel defactinib-based compounds were designed and verified using ensemble docking. Overall, the present study improves our understanding of the binding mechanism of human FAK with VS-6063 and provides new insights into future drug designs targeting FAK.Communicated by Ramaswamy H. Sarma.

11.
Front Oncol ; 13: 1280513, 2023.
Article in English | MEDLINE | ID: mdl-38188306

ABSTRACT

Background: Surgery represents the only cure for hilar cholangiocarcinoma (HC). However, laparoscopic radical resection remains technically challenging owing to the complex anatomy and reconstruction required during surgery. Therefore, reports on laparoscopic surgery (LS) for HC, especially for types III and IV, are limited. This study aimed to evaluate the safety and feasibility of laparoscopic radical surgery for Bismuth types III and IV HC. Methods: The data of 16 patients who underwent LS and 9 who underwent open surgery (OS) for Bismuth types III and IV HC at Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, between December 2017 and January 2022 were analyzed. Basic patient information, Bismuth-Corlette type, AJCC staging, postoperative complications, pathological findings, and follow-up results were evaluated. Results: Sixteen patients underwent LS and 9 underwent OS for HC. According to the preoperative imaging data, there were four cases of Bismuth type IIIa, eight of type IIIb, and four of type IV in the LS group and two of type IIIa, four of type IIIb, and three of type IV in the OS group (P>0.05). There were no significant differences in age, sex, ASA score, comorbidity, preoperative percutaneous transhepatic biliary drainage rate, history of abdominal surgery, or preoperative laboratory tests between the two groups (P>0.05). Although the mean operative time and mean intraoperative blood loss were higher in the LS group than in OS group, the differences were not statistically significant (P=0.121 and P=0.115, respectively). Four patients (25%) in the LS group and two (22.2%) in the OS group experienced postoperative complications (P>0.05). No significant differences were observed in other surgical outcomes and pathologic findings between the two groups. Regarding the tumor recurrence rate, there was no difference between the groups (P>0.05) during the follow-up period (23.9 ± 13.3 months vs. 17.8 ± 12.3 months, P=0.240). Conclusion: Laparoscopic radical resection of Bismuth types III and IV HC remains challenging, and extremely delicate surgical skills are required when performing extended hemihepatectomy followed by complex bilioenteric reconstructions. However, this procedure is generally safe and feasible for hepatobiliary surgeons with extensive laparoscopy experience.

12.
Eur J Med Chem ; 243: 114686, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36055003

ABSTRACT

In this study, we described a series of 2-(1-(1,3,4-thiadiazol-2-yl)piperidin-4-yl)ethan-1-ol analogs as selective GLS1 inhibitors. Systematic exploration of the structure-activity relationship through introducing the hydrophilic skeleton and different chains based on BPTES led to the discovery of the superior derivative compound 24y. Compound 24y showed excellent potency on GLS1 kinase with an IC50 value of 68 nM, and exhibited more than 220-fold selectivity for GLS2. Moreover, in vitro studies indicated that compound 24y played a function on the mitochondria GLS1 pathway, which was the upregulation of ROS levels. Compound 24y also demonstrated relatively good metabolic stabilities with a bioavailability of 12.4%. Additionally, compound 24y showed antitumor activities in A549 and HCT116 xenograft tumor models, with tumor growth inhibitions of 40.9% and 42.0% by oral gavage of 100 mg/kg, respectively. Taken together, these findings suggest that compound 24y is a potent GLS1 inhibitor, offering a new strategy for the development of novel GLS1 inhibitors.


Subject(s)
Neoplasms , Thiadiazoles , Humans , Glutaminase , Thiadiazoles/pharmacology
13.
ACS Omega ; 7(36): 32442-32456, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36119979

ABSTRACT

Focal adhesion kinase (FAK) is a 125 kDa nonreceptor tyrosine kinase that plays an important role in many carcinomas. Thus, the targeting of FAK by small molecules is considered to be promising for cancer therapy. Some FAK inhibitors have been reported as potential anticancer drugs and have entered into clinical development; for example, VS-4718 is currently undergoing clinical trials. However, the lack of crystal structural data for the binding of VS-4718 with FAK has hindered the optimization of this anticancer agent. In this work, the VS-4718/FAK interaction model was obtained by molecular docking and molecular dynamics simulations. The binding free energies of VS-4718/FAK were also calculated using the molecular mechanics generalized Born surface area method. It was found that the aminopyrimidine group formed hydrogen bonds with the C502 residue of the hinge loop, while the D564 residue of the T-loop interacted with the amide group. In addition, I428, A452, V484, M499, G505, and L553 residues formed hydrophobic interactions with VS-4718. The obtained results therefore provide an improved understanding of the interaction between human FAK and VS-4718. Based on the obtained binding mechanism, 47 novel compounds were designed to target the adenosine 5'-triphosphate-binding pocket of human FAK, and ensemble docking was performed to assess the effects of these modifications on the inhibitor binding affinity. This work is also expected to provide additional insights into potential future target design strategies based on VS-4718.

15.
Bioorg Chem ; 128: 106053, 2022 11.
Article in English | MEDLINE | ID: mdl-35964504

ABSTRACT

A hydroxamic acid based microtubule-destabilizing agent (MDA) SKLB-14b was discovered in this study, which was derived from shortening the linker length of the HDAC6 and microtubule dual-target inhibitor SKLB-23bb. SKLB-14b exhibited low nanomolar IC50 values on a wide spectrum of human cancer cell lines including both sensitive and multidrug-resistant cell lines. Surprisingly, its anti-proliferative activity relied on the presence of the hydroxamic acid group but lost inhibitory activity against HDACs. SKLB-14b bound to the colchicine site of tubulin and could inhibit tubulin polymerization. It exhibited good metabolic stability in liver microsomes, no inhibitory effect on CYP450 isoenzymes and high oral bioavailability. In vivo experiments revealed that SKLB-14b was potent in both sensitive (A2780S, HCT116) and resistant (A2780/T) xenograft mice models. Furthermore, in the patient-derived tumor xenograft (PDX) models of osimertinib resistant non-small cell lung cancer (NSCLC), 50 mg/kg of SKLB-14b administered every twodays inhibited tumor growth by 70.6% without obvious toxicity, better than the 59.7% inhibition rate of paclitaxel. Mechanistically, we found that SKLB-14b exerted anti-tumor and anti-multidrug resistance effects in vitro and in vivo through cell cycle arrest and pro-apoptotic activities, as well as vascular disrupting activities. Therefore, we discovered that SKLB-14b, as a novel MDA based on hydroxamic acid, could serve as a potential drug candidate for cancer therapy which deserves further investigation.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Ovarian Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Female , Humans , Hydroxamic Acids/pharmacology , Lung Neoplasms/drug therapy , Mice , Microtubules , Ovarian Neoplasms/drug therapy , Tubulin/metabolism , Tubulin Modulators/pharmacology , Xenograft Model Antitumor Assays
17.
J Med Chem ; 65(14): 9893-9917, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35831917

ABSTRACT

Nowadays, PI3Kδ-γ dual inhibitors have been approved for the treatment of B-cell malignancies. Dual inhibition of PI3Kδ and PI3Kγ represents a unique therapeutic opportunity and may confer greater benefits than either isoform inhibition alone in the management of hematological malignancies. However, currently available dual inhibitors of PI3Kδ-γ compromise in at least one of several essential properties in terms of potency, selectivity, and pharmacokinetic (PK) profiles. Hence, the main challenge of our optimization campaign was to identify an oral available PI3Kδ-γ dual inhibitor with an optimum balance of potency, selectivity, and PK profiles. The medicinal chemistry efforts culminated in the discovery of compound 58, which exhibited strong potency and high selectivity along with excellent in vivo profiles as demonstrated through PK studies in rats and through pharmacodynamic studies in an SUDHL-6 xenograft model. All the results suggest that compound 58 may be a promising candidate for the treatment of B-cell malignancies.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Animals , B-Lymphocytes , Class I Phosphatidylinositol 3-Kinases , Humans , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Rats
18.
Front Chem ; 10: 921695, 2022.
Article in English | MEDLINE | ID: mdl-35646830

ABSTRACT

Using supramolecules for protein function regulation is an effective strategy in chemical biology and drug discovery. However, due to the presence of multiple binding sites on protein surfaces, protein function regulation via selective binding of supramolecules is challenging. Recently, the functions of 14-3-3 proteins, which play an important role in regulating intracellular signaling pathways via protein-protein interactions, have been modulated using a supramolecular tweezer, CLR01. However, the binding mechanisms of the tweezer molecule to 14-3-3 proteins are still unclear, which has hindered the development of novel supramolecules targeting the 14-3-3 proteins. Herein, the binding mechanisms of the tweezer to the lysine residues on 14-3-3σ (an isoform in 14-3-3 protein family) were explored by well-tempered metadynamics. The results indicated that the inclusion complex formed between the protein and supramolecule is affected by both kinetic and thermodynamic factors. In particular, simulations confirmed that K214 could form a strong binding complex with the tweezer; the binding free energy was calculated to be -10.5 kcal·mol-1 with an association barrier height of 3.7 kcal·mol-1. In addition, several other lysine residues on 14-3-3σ were identified as being well-recognized by the tweezer, which agrees with experimental results, although only K214/tweezer was co-crystallized. Additionally, the binding mechanisms of the tweezer to all lysine residues were analyzed by exploring the representative conformations during the formation of the inclusion complex. This could be helpful for the development of new inhibitors based on tweezers with more functions against 14-3-3 proteins via modifications of CLR01. We also believe that the proposed computational strategies can be extended to understand the binding mechanism of multi-binding sites proteins with supramolecules and will, thus, be useful toward drug design.

19.
Comput Struct Biotechnol J ; 20: 2574-2586, 2022.
Article in English | MEDLINE | ID: mdl-35685353

ABSTRACT

The kinase domain is highly conserved among protein kinases 'in terms of both sequence and structure. Conformational rearrangements of the kinase domain are affected by the phosphorylation of residues and the binding of kinase inhibitors. Interestingly, the conformational rearrangement of the active pocket plays an important role in kinase activity and can be used to design novel kinase inhibitors. We characterized the conformational plasticity of the active pocket when bosutinib was bound to salt-inducible kinase 2 (SIK2) using homology modeling and molecular dynamics simulations. Ten different initial complex models were constructed using the Morph server, ranging from open to closed conformations of SIK2 binding with bosutinib. Our simulation showed that bosutinib binds SIK2 with up or down conformations of the P-loop and with all the conformations of the activation loop. In addition, the αC-helix conformation was induced by the conformation of the activation loop, and the salt bridge formed only with its open conformation. The binding affinity of the models was also determined using the molecular mechanics generalized Born surface area method. Bosutinib was found to form a strong binding model with SIK2 and hydrophobic interactions were the dominant factor. This discovery may help guide the design of novel SIK2 inhibitors.

20.
J Med Chem ; 65(13): 9312-9327, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35709396

ABSTRACT

Receptor-interacting serine/threonine protein kinase 2 (RIPK2) has been demonstrated to be a promising target for treating inflammatory diseases. Herein, we describe the discovery and optimization of a series of RIPK2 inhibitors derived from an FLT3 inhibitor, CHMFL-FLT3-165. Compound 10w was identified to possess an IC50 value of 0.6 nM for RIPK2 and greater than 50,000-fold selectivity over its family homologous kinase RIPK1 (IC50 > 30 µM). It exhibited high kinase selectivity and inhibited RIPK2 to prevent NOD-induced cytokine production following muramyl dipeptide (MDP) stimulation. In an acute colitis model, compound 10w exerted better therapeutic effects than the JAK inhibitor filgotinib and the RIPK2 inhibitor WEHI-345. These robust results of in vitro and in vivo pharmacodynamic experiments demonstrate that RIPK2 as a therapeutic target shows potential abilities for the treatment of inflammatory bowel diseases.


Subject(s)
Inflammatory Bowel Diseases , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases , Serine , Threonine
SELECTION OF CITATIONS
SEARCH DETAIL
...