Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 102(29): e34376, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37478225

ABSTRACT

This study aimed to analyze the association of lifestyle habits (physical activity, sleep habits, and eating habits) with cardiovascular risk (arterial stiffness and autonomic nervous system function) among sedentary adults. Sixty adults of sedentariness and physical activity were evaluated by accelerometers; sleep and eating habits were assessed by questionnaires; cardiovascular risks were assessed by pulse wave velocity (PWV), ankle-brachial index, flow mediated dilation, and heart rate variability; circulating biomarkers were also determined. Prolonged sitting (represented by longer maximum length of sedentary bouts, lower length of sedentary breaks, and more total time of sitting) were (P < .05) significantly associated with matrix metalloproteinases, neuropeptide Y, C-reactive protein, peptide Y, ghrelin, and leptin; significant associations (P < .05) were also observed of total time in physical activity with most circulating biomarkers except interleukin-6, tumor necrosis factor-α, and adiponectin. Sleep habits, especially sleep efficiency, were (P < .05) significantly associated with PWV, ankle-brachial index, and circulating biomarkers. Eating habits (including emotional overeating and enjoyment of food) were (P < .05) significantly associated with PWVs and flow mediated dilation; satiety responsiveness and enjoyment of food were (P < .05) significantly associated with low-frequency spectral component expressed in normalized units, high frequency spectral component expressed in normalized units, and ratio between low-frequency/high frequency spectral component expressed in normalized units. The findings indicated that several lifestyle habits among sedentary adults were closely associated with increased cardiovascular risk. Sedentary people were encouraged to live with sufficient physical activity, good sleep, and healthy eating habits for decreasing arterial stiffness and balancing autonomic nervous function.


Subject(s)
Cardiovascular Diseases , Vascular Stiffness , Humans , Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Risk Factors , Pulse Wave Analysis , Life Style , Heart Disease Risk Factors , Biomarkers , Habits
2.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232489

ABSTRACT

We aimed to investigate the efficacy of exercise on preventing arterial stiffness and the potential role of sympathetic nerves within perivascular adipose tissue (PVAT) in pressure-overload-induced heart failure (HF) mice. Eight-week-old male mice were subjected to sham operation (SHAM), transverse aortic constriction-sedentary (TAC-SE), and transverse aortic constriction-exercise (TAC-EX) groups. Six weeks of aerobic exercise training was performed using a treadmill. Arterial stiffness was determined by measuring the elastic modulus. The elastic and collagen fibers of the aorta and sympathetic nerve distribution in PVAT were observed. Circulating noradrenaline (NE), expressions of ß3-adrenergic receptor (ß3-AR), and adiponectin in PVAT were quantified. During the recovery of cardiac function by aerobic exercise, thoracic aortic collagen elastic modulus (CEM) and collagen fibers were significantly decreased (p < 0.05, TAC-SE vs. TAC-EX), and elastin elastic modulus (EEM) was significantly increased (p < 0.05, TAC-SE vs. TAC-EX). Circulating NE and sympathetic nerve distribution in PVAT were significantly decreased (p < 0.05, TAC-SE vs. TAC-EX). The expression of ß3-AR was significantly reduced (p < 0.05, TAC-SE vs. TAC-EX), and adiponectin was significantly increased (p < 0.05, TAC-SE vs. TAC-EX) in PVAT. Regular aerobic exercise can effectively prevent arterial stiffness and extracellular matrix (ECM) remodeling in the developmental course of HF, during which sympathetic innervation and adiponectin within PVAT might be strongly implicated.


Subject(s)
Heart Failure , Physical Conditioning, Animal , Sympathetic Nervous System , Vascular Stiffness , Animals , Male , Mice , Adiponectin/metabolism , Adipose Tissue/metabolism , Constriction , Elastin/metabolism , Heart Failure/metabolism , Mice, Inbred C57BL , Norepinephrine/metabolism , Receptors, Adrenergic, beta-3/metabolism , Sympathetic Nervous System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...