Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 13(1): 220, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34906185

ABSTRACT

BACKGROUND: Early lung cancer detection remains a clinical challenge for standard diagnostic biopsies due to insufficient tumor morphological evidence. As epigenetic alterations precede morphological changes, expression alterations of certain imprinted genes could serve as actionable diagnostic biomarkers for malignant lung lesions. RESULTS: Using the previously established quantitative chromogenic imprinted gene in situ hybridization (QCIGISH) method, elevated aberrant allelic expression of imprinted genes GNAS, GRB10, SNRPN and HM13 was observed in lung cancers over benign lesions and normal controls, which were pathologically confirmed among histologically stained normal, paracancerous and malignant tissue sections. Based on the differential imprinting signatures, a diagnostic grading model was built on 246 formalin-fixed and paraffin-embedded (FFPE) surgically resected lung tissue specimens, tested against 30 lung cytology and small biopsy specimens, and blindly validated in an independent cohort of 155 patients. The QCIGISH diagnostic model demonstrated 99.1% sensitivity (95% CI 97.5-100.0%) and 92.1% specificity (95% CI 83.5-100.0%) in the blinded validation set. Of particular importance, QCIGISH achieved 97.1% sensitivity (95% CI 91.6-100.0%) for carcinoma in situ to stage IB cancers with 100% sensitivity and 91.7% specificity (95% CI 76.0-100.0%) noted for pulmonary nodules with diameters ≤ 2 cm. CONCLUSIONS: Our findings demonstrated the diagnostic value of epigenetic imprinting alterations as highly accurate translational biomarkers for a more definitive diagnosis of suspicious lung lesions.


Subject(s)
Biomarkers, Tumor/genetics , Lung Neoplasms/diagnosis , Multiple Pulmonary Nodules/genetics , Aged , Biomarkers, Tumor/analysis , DNA Methylation/genetics , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Early Detection of Cancer/statistics & numerical data , Epigenesis, Genetic/genetics , Female , Genomic Imprinting/genetics , Genomic Imprinting/physiology , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Multiple Pulmonary Nodules/etiology
2.
Clin Epigenetics ; 12(1): 71, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448196

ABSTRACT

BACKGROUND: Epigenetic alterations are involved in most cancers, but its application in cancer diagnosis is still limited. More practical and intuitive methods to detect the aberrant expressions from clinical samples using highly sensitive biomarkers are needed. In this study, we developed a novel approach in identifying, visualizing, and quantifying the biallelic and multiallelic expressions of an imprinted gene panel associated with cancer status. We evaluated the normal and aberrant expressions measured using the imprinted gene panel to formulate diagnostic models which could accurately distinguish the imprinting differences of normal and benign cases from cancerous tissues for each of the ten cancer types. RESULTS: The Quantitative Chromogenic Imprinted Gene In Situ Hybridization (QCIGISH) method developed from a 1013-case study which provides a visual and quantitative analysis of non-coding RNA allelic expressions identified the guanine nucleotide-binding protein, alpha-stimulating complex locus (GNAS), growth factor receptor-bound protein (GRB10), and small nuclear ribonucleoprotein polypeptide N (SNRPN) out of five tested imprinted genes as efficient epigenetic biomarkers for the early-stage detection of ten cancer types. A binary algorithm developed for cancer diagnosis showed that elevated biallelic expression (BAE), multiallelic expression (MAE), and total expression (TE) measurements for the imprinted gene panel were associated with cell carcinogenesis, with the formulated diagnostic models achieving consistently high sensitivities (91-98%) and specificities (86-98%) across the different cancer types. CONCLUSIONS: The QCIGISH method provides an innovative way to visually assess and quantitatively analyze individual cells for cancer potential extending from hyperplasia and dysplasia until carcinoma in situ and invasion, which effectively supplements standard clinical cytologic and histopathologic diagnosis for early cancer detection. In addition, the diagnostic models developed from the BAE, MAE, and TE measurements of the imprinted gene panel GNAS, GRB10, and SNRPN could provide important predictive information which are useful in early-stage cancer detection and personalized cancer management.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Genomic Imprinting , In Situ Hybridization/methods , Neoplasms/diagnosis , Algorithms , Alleles , Chromogranins/genetics , Early Detection of Cancer , Female , GRB10 Adaptor Protein/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasms/genetics , Ribonucleoproteins, Small Nuclear/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...