Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37239183

ABSTRACT

The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.

2.
Theor Appl Genet ; 136(1): 3, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36651948

ABSTRACT

KEY MESSAGE: The QYm.nau-2D locus conferring wheat yellow mosaic virus resistance is an exotic introgression and we developed 11 diagnostic markers tightly linked to QYm.nau-2D. Wheat yellow mosaic virus (WYMV) is a serious disease of winter wheat in China. Breeding resistant varieties is the most effective strategy for WYMV control. A WYMV resistant locus QYm.nau-2D on the chromosome arm 2DL has been repeatedly reported but the mapped region is large. In the present study, we screened recombinants using a biparental population and mapped QYm.nau-2D into an 18.8 Mb physical interval. By genome-wide association studies of 372 wheat varieties for WYMV resistance in four environments, we narrowed down QYm.nau-2D into a 16.4 Mb interval. Haplotype analysis indicated QYm.nau-2D were present as six different states due to recombination during hybridization breeding. QYm.nau-2D was finally mapped into a linkage block of 11.2 Mb. Chromosome painting using 2D specific probes and collinearity analysis among the published sequences corresponding to QYm.nau-2D region indicated the block was an exotic introgression. The Illumina-sequenced reads of four diploid Aegilops species were mapped to the sequence of Fielder, a variety having the introgression. The mapping reads were significantly increased at the putative introgression regions of Fielder. Ae. uniaristata (NN) had the highest mapping reads, suggesting that QYm.nau-2D was possibly an introgression from genome N. We investigated the agronomic performances of different haplotypes and observed no linkage drag of the alien introgression for the 15 tested traits. For marker-assisted selection of QYm.nau-2D, we developed 11 diagnostic markers tightly linked to the locus. This research provided a case study of an exotic introgression, which has been utilized in wheat improvement for WYMV resistance.


Subject(s)
Mosaic Viruses , Potyviridae , Triticum/genetics , Chromosome Mapping , Genetic Markers , Disease Resistance/genetics , Genome-Wide Association Study , Plant Diseases/genetics , Plant Breeding
3.
Plant J ; 112(1): 55-67, 2022 10.
Article in English | MEDLINE | ID: mdl-35998122

ABSTRACT

Aegilops species represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships among Aegilops species or between Aegilops and wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D-specific fluorescence in situ hybridization (FISH) probes by selecting D-specific oligonucleotides based on the reference genome of Chinese Spring. The oligo-based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions of Ae. tauschii from different origins led us to identify two novel translocations: a reciprocal 3D-7D translocation in two accessions and a complex 4D-5D-7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverse Aegilops species. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified in Aegilops umbellulata, Aegilops markgrafii, and Aegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding.


Subject(s)
Aegilops , Triticum , Aegilops/genetics , Chromosome Painting , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Oligonucleotides , Plant Breeding , Translocation, Genetic/genetics , Triticum/genetics
4.
PLoS Negl Trop Dis ; 16(5): e0010461, 2022 05.
Article in English | MEDLINE | ID: mdl-35617354

ABSTRACT

Angiostrongylus cantonensis (AC) is well-documented that parasitizes the host brain and causes eosinophilic meningitis. The migration route of AC in permissive hosts is well demonstrated, while in nonpermissive hosts, it remains to be fully defined. In the present study, we exploited live imaging technology, morphological and pathological configuration analysis, and molecular biological technologies to explore the migration route of AC and the accompanying tissue damage in nonpermissive and permissive hosts. Our data indicated that, in nonpermissive host mouse, AC larvae migrated from intestinal wall to liver at 2 hours post-infection (hpi), from liver to lung at 4 hpi and then from lung to brain at 8 hpi. AC larval migration caused fatal lung injury (pneumonia) during acute and early infection phases, along with significant activation of Stat3/IL-6 signaling. In addition, AC induce sustained interstitial pneumonia in mouse and rat and pulmonary fibrosis only in rat during late infection phase. Moreover, during the early and late infection phases, Th2 cytokine expression and Stat3 and IL-6 signaling were persistently enhanced and myeloid macrophage cells were notably enriched in host lung, and administration of Stat3 and IL-6 inhibitors (C188-9 and LMT-28) attenuated AC infection-induced acute pneumonia in mice. Overall, we are the first to provide direct and systemic laboratory evidence of AC migration route in a nonpermissive host and report that infection with a high dose of AC larvae could result in acute and fatal pneumonia through Stat3/IL-6 signaling in mice. These findings may present a feasible to rational strategy to minimize the pathogenesis induced by AC.


Subject(s)
Angiostrongylus cantonensis , Meningitis , Pneumonia , Strongylida Infections , Animals , Interleukin-6/genetics , Mice , Rats , STAT3 Transcription Factor/metabolism , Strongylida Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...