Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(2): 2052-2062, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32865683

ABSTRACT

Lanthanum-modified bentonite (LMB, Phoslock®) is a well-known capping agent for phosphorus immobilization in sediments. Herein, LMB was used to immobilize As in sediments. Batch capacity experiments for arsenate and arsenite adsorption were carried out to obtain adsorption isotherms and kinetics using the Langmuir and Freundlich model calculations. High-resolution (HR) diffusive gradients in thin films (DGT) were applied to monitor the changes of weakly bound As fraction near sediment-water interface (SWI). The interaction of As(III) and As(V) with LMB was influenced by pH and initial mineral composition. As(V) was more obviously adsorbed than As(III) at pH 4 to 9, with mean adsorption of 3.89 mg g-1 and 0.04 mg g-1, respectively, while at pH > 9 As(III) was preferentially adsorbed. After LMB amendment for 2 months, the maximum As removal efficiency in the pore and overlying water reached 84.5% and 99.3%, respectively. The capping agent remained stable in the top sediments, while the maximum DGT labile As content decreased to 0.89 and 0.51 µg L-1 in dosage-and time-treatments. The As concentration inflection point moved down to a deeper layer. As species changed from labile exchangeable-As to Fe-oxide-bound and residual As. The proportion of mobile As finally decreased to 10.5% of the total As in the upper 20-mm layer sediment. The increase of Kd (the distribution coefficient at SWI) and k1 (adsorption rate constant) and the decrease of Tc (response time of (de)sorption) in the DGT-induced fluxes model (DIFS) indicated the time-dependent impediment of As release from the sediment due to LMB immobilization.


Subject(s)
Arsenic , Water Pollutants, Chemical , Bentonite , Geologic Sediments , Lakes , Lanthanum , Phosphorus , Water Pollutants, Chemical/analysis
2.
J Environ Sci (China) ; 34: 28-36, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26257343

ABSTRACT

In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low (LL), moderate (ML) and high light intensities (HL) (2, 25 and 80 µmol photons/(m(2)·sec)), respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake (Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant (Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates (Vm(Si)) at HL and Km(Si) at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.


Subject(s)
Diatoms/metabolism , Diatoms/radiation effects , Light , Phosphorus/metabolism , Silicon/metabolism , China , Diatoms/growth & development , Eutrophication , Kinetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...