Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Inflammation ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819583

ABSTRACT

In this study, we investigated the role of hypoxia in the development of chronic inflammatory bowel disease (IBD), focusing on its impact on the HIF-1α signaling pathway through the upregulation of lipocalin 2 (LCN2). Using a murine model of colitis induced by sodium dextran sulfate (DSS) under hypoxic conditions, transcriptome sequencing revealed LCN2 as a key gene involved in hypoxia-mediated exacerbation of colitis. Bioinformatics analysis highlighted the involvement of crucial pathways, including HIF-1α and glycolysis, in the inflammatory process. Immune infiltration analysis demonstrated the polarization of M1 macrophages in response to hypoxic stimulation. In vitro studies using RAW264.7 cells further elucidated the exacerbation of inflammation and its impact on M1 macrophage polarization under hypoxic conditions. LCN2 knockout cells reversed hypoxia-induced inflammatory responses, and the HIF-1α pathway activator dimethyloxaloylglycine (DMOG) confirmed LCN2's role in mediating inflammation via the HIF-1α-induced glycolysis pathway. In a DSS-induced colitis mouse model, oral administration of LCN2-silencing lentivirus and DMOG under hypoxic conditions validated the exacerbation of colitis. Evaluation of colonic tissues revealed altered macrophage polarization, increased levels of inflammatory factors, and activation of the HIF-1α and glycolysis pathways. In conclusion, our findings suggest that hypoxia exacerbates colitis by modulating the HIF-1α pathway through LCN2, influencing M1 macrophage polarization in glycolysis. This study contributes to a better understanding of the mechanisms underlying IBD, providing potential therapeutic targets for intervention.

3.
Cell Signal ; 120: 111187, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38648894

ABSTRACT

Hypobaric hypoxia, commonly experienced at elevated altitudes, presents significant physiological challenges. Our investigation is centered on the impact of the bromodomain protein 4 (BRD4) under these conditions, especially its interaction with the Wnt/ß-Catenin pathway and resultant effects on glycolytic inflammation and intestinal barrier stability. By combining transcriptome sequencing with bioinformatics, we identified BRD4's key role in hypoxia-related intestinal anomalies. Clinical parameters of altitude sickness patients, including serum BRD4 levels, inflammatory markers, and barrier integrity metrics, were scrutinized. In vitro studies using CCD 841 CoN cells depicted expression changes in BRD4, Interleukin (IL)-1ß, IL-6, and ß-Catenin. Transepithelial electrical resistance (TEER) and FD4 analyses assessed barrier resilience. Hypoxia-induced mouse models, analyzed via H&E staining and Western blot, provided insights into barrier and protein alterations. Under hypoxic conditions, marked BRD4 expression variations emerged. Elevated serum BRD4 in patients coincided with intensified Wnt signaling, inflammation, and barrier deterioration. In vitro, findings showed hypoxia-induced upregulation of BRD4 and inflammatory markers but a decline in Occludin and ZO1, affecting barrier strength-effects mitigated by BRD4 inhibition. Mouse models echoed these patterns, linking BRD4 upregulation in hypoxia to barrier perturbations. Hypobaric hypoxia-induced BRD4 upregulation disrupts the Wnt/ß-Catenin signaling, sparking glycolysis-fueled inflammation and weakening intestinal tight junctions and barrier degradation.


Subject(s)
Transcription Factors , Wnt Signaling Pathway , Adult , Animals , Female , Humans , Male , Mice , Altitude Sickness/metabolism , beta Catenin/metabolism , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Transcription Factors/metabolism
4.
Aging (Albany NY) ; 16(4): 3803-3822, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38376420

ABSTRACT

We conducted an investigation to determine the potential of mitochondrial-related genes as diagnostic biomarkers in ulcerative colitis (UC), while also examining their association with immune cell infiltration. To achieve this, we acquired four datasets pertaining to UC, which included gene expression arrays and clinical data, from the GEO database. Subsequently, we selected three signature genes (PDK2, CHDH, and ALDH5A1) to construct a diagnostic model for UC. The nomogram and ROC curves exhibited exceptional diagnostic efficacy. Following this, quantitative real-time polymerase chain reaction and western blotting assays validated the decreased mRNA and protein expression of PDK2, CHDH, and ALDH5A1 in the model of UC cells and dextran sulfate sodium salt (DSS)-induced mice colitis tissues, aligning with the findings in the risk model. This investigation suggested a negative correlation between the expression of ALDH5A1, CHDH, and PDK2 and the infiltration of M1 macrophages. Then, immunofluorescence analysis confirmed the augmented expression of CD86 in the tissue of mice subjected to DSS, while a diminished expression of ALDH5A1, CHDH, and PDK2 was observed. Consequently, it can be inferred that targeting mitochondria-associated genes, namely PDK2, CHDH, and ALDH5A1, holds potential as a viable strategy for prognostic prediction and the implementation of immune therapy for UC.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/genetics , Colitis/chemically induced , DNA, Mitochondrial/therapeutic use
5.
J Cancer ; 15(1): 176-191, 2024.
Article in English | MEDLINE | ID: mdl-38164277

ABSTRACT

Background: The objective of this study was to analyze the research trend of four RIPK genes (RIPK1, RIPK2, RIPK3, and RIPK4), their expression variations in tumors, and the correlation between RIPK2 expression and immune-related biomarkers in gastric cancer (GC). Methods: The PubMed database was utilized to investigate the research trend surrounding four RIPKs genes in tumors. The ULCAN database was employed to analyze the differential expression of these four RIPKs genes. TCGA data were utilized to examine the association between RIPK2 expression and various factors including tumor immune infiltration and immune-related biomarkers. Lastly, the impact of targeting RIPK2 on the growth of GC cells was confirmed through tumor formation assay, immunohistochemistry, and Tunnel assays. Results: In the field of tumor biology, there has been a sustained increase in research focused on the four RIPKs genes over the past decade. Four RIPKs genes are differentially expressed in a majority of tumors. Furthermore, this investigation has unveiled a connection between the expression of RIPK2 and the infiltration of four immune cells, as well as the presence of RNA methylation modifying enzymes, specifically m1A, m6A, and m5C, in GC. Additionally, RIPK2 expression was associated with the genes related to immune checkpoint regulation, as well as genes associated with immunoinhibitors and immunostimulators. It was also revealed that RIPK2 expression was correlated to immunotherapy response biomarkers, namely MSI and TMB, and tumor stemness. Ultimately, it was demonstrated that targeting the RIPK2 effectively regulated GC cells growth through the suppression of PCNA expression and the induction of apoptosis. Conclusion: The expression of RIPK2 is correlated with immune cell infiltration, RNA methyltransferase activity, tumor stemness, checkpoint-related genes, and immunotherapy-related biomarkers. Suppression of RIPK2 impedes the growth of GC cells in vivo. Consequently, RIPK2 holds promise as a viable immunotherapy target for various types of cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...