Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1654: 462460, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34438303

ABSTRACT

With the growing concerns of polymer-grafted ion-exchange chromatography, the importance of protein adsorption on charged polymer-grafted surfaces cannot be stressed enough. However, a full understanding in adsorption in polymer brushes is still a great challenge due to the lack of in situ characterization technique. In this work, we use quartz crystal microbalance with dissipation to in situ investigate adsorption kinetics of γ-globulin and recombinant human lactoferrin on poly(3-sulfopropyl methacrylate) (pSPM) sensors prepared via atom transfer radical polymerization. With an increase of chain length and grafting density, great increasing amounts of proteins on pSPM-grafted sensors revealed that protein underwent a transition from monolayer to multilayer adsorption. It was attributed to direct protein binding into charged brushes, in which more binding sites involved and more coupled water lost. However, such a strong binding and rigid structure of proteins limited the protein transport in pSPM brushes and "chain delivery" effect. With an increase in grafting density, moreover, denser brushes hindered adjustment in protein conformation in pSPM brushes and further exacerbated protein transport in pSPM brushes. Furthermore, the influence of buffer pH and salt concentration further validated the ion exchange characteristics of protein adsorption into pSPM brushes. The research provided a variety of in situ evidence of protein binding and conformation evolution in pSPM brushes and elucidated mechanism of protein adsorption in pSPM brushes.


Subject(s)
Chromatography , Polyelectrolytes , Polymers , Proteins , Quartz Crystal Microbalance Techniques , Adsorption , Humans , Kinetics , Methacrylates/chemistry , Polyelectrolytes/chemistry , Polymers/chemistry , Proteins/chemistry , Surface Properties
2.
Eng Life Sci ; 21(6): 392-404, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34140850

ABSTRACT

The formation of a stable spatial arrangement of protein A ligands is a great challenge for the development of high-capacity polymer-grafted protein A adsorbents due to the complexity in interplay between coupled ligands and polymer chain. In this work, carboxymethyl dextrans (CMDs) with different molecular weight were introduced to provide stable spatial ligand arrangement in CMD-grafted protein A gels to improve IgG adsorption. The result showed that coupling of protein A ligand in CMD-grafted layer had no marked influence on pore size and dextran layers coupled with the ligands were stable in experimental range of salt concentrations. The result of IgG adsorption revealed that carboxymethyl dextran T10, a short CMD, was more suitable as a scaffold for the synthesis of high-capacity protein A gels. Moreover, the maximal adsorption capacity for IgG was obtained to be 96.4 mg/g gel at ionic capacities of 300-350 mmol/L and a ligand density of 15.2 mg/g gel. Dynamic binding capacity for IgG exhibited a higher capacity utilization in CMD-grafted protein A gels than non-grafted protein A gel. The research presented a tactics to establish a stable dextran layer coupled with protein A ligands and demonstrated its importance to improve binding capacity for IgG.

3.
J Chromatogr A ; 1369: 64-72, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25441072

ABSTRACT

This work reports the development of affinity systems with dual octapeptide ligands for affinity adsorption and purification of human IgG (hIgG) and monoclonal antibody (mAb). The three octapeptide ligands, FYWHCLDE (1), FYCHWALE (2), and FYCHTIDE (3), identified earlier by the biomimetic design strategy were used; any two of the three were mixed and coupled to Sepharose gel, leading to the formation of three dual-ligand affinity systems. Research emphasis was first placed on hIgG adsorption isotherms and the results were compared to the three single-ligand affinity systems. It was found that there was synergistic effect of the two peptide ligands in a dual-ligand system, so the affinity of a dual-ligand resin for hIgG was higher than those of its counterparts, single-ligand resins. Of the three dual-ligand systems, the FYWHCLDE (1)-FYCHTIDE (3) resin showed the highest affinity, so it was selected for investigating the effects of ligand density and molar ratio on hIgG adsorption equilibrium. It was found that the synergistic effect increased with increasing the total ligand density of the two peptides in the dual-ligand affinity system. Moreover, the FYWHCLDE (1)-FYCHTIDE (3) system at a molar ratio of 2:1 displayed the highest affinity for hIgG (0.69 µM at a total ligand density of 31.1 µmol/mL), indicating that the synergistic effect reached the maximum at this ratio. This dual-ligand affinity column was then used for the purification of hIgG and mAb by affinity chromatography, resulting in over 95% pure hIgG and mAb at recovery yield over 90%. Molecular docking of the two peptides to the Fc fragment simultaneously showed that FYWHCLDE (1) stood still but FYCHTIDE (3) shifted aside the CH2CH3 inter-domain. Molecular dynamics simulation of the binding process of the two octapeptides to Fc revealed that both the peptide ligands kept stable interactions with Fc. The synergistic effect of the dual-ligand affinity system was thus elucidated by the molecular simulations.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Chromatography, Affinity/methods , Immunoglobulin G/isolation & purification , Peptides/immunology , Antibodies, Monoclonal/immunology , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/immunology , Ligands , Peptides/chemistry
4.
J Sep Sci ; 37(23): 3461-72, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25231527

ABSTRACT

Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification.


Subject(s)
Chromatography/methods , Immunoglobulin G/isolation & purification , Plasma/chemistry , Adsorption , Animals , Rabbits
5.
J Chromatogr A ; 1359: 100-11, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25064536

ABSTRACT

In an earlier work, we have developed a biomimetic design strategy based on the human IgG (hIgG)-Protein A interactions and identified an affinity ligand for hIgG, FYWHCLDE, which ranked top one in a pool of 14 potential candidates. Herein, two more octapeptides, FYCHWALE and FYCHTIDE, were identified, and the binding and purification of hIgG on the affinity columns packed with the three octapeptide-modified Sepharose gels were extensively studied and compared to find more effective octapeptide-based affinity ligands. It was found that all the three ligands bound hIgG and Fc fragment but barely bound Fab fragment, and the binding to hIgG and Fc was mainly by electrostatic interactions. The optimum binding pH values for the three ligands were different from each other, but kept in the range of 5.0-6.0. Ligand binding competition revealed that the binding sites on hIgG for the three octapeptides were similar to those for Protein A. Adsorption isotherms revealed that hIgG binding capacity was in the range of 64-104mg/mL drained gel in the order of FYWHCLDE>FYCHWALE>FYCHTIDE. Then, purifications of hIgG and human monoclonal antibody from human serum and cell culture supernatant, respectively, were achieved with the three affinity columns at high purities and recovery yields. Finally, the molecular basis for the binding affinity of the peptides for the Fc fragment of hIgG was elucidated by molecular dynamics simulations.


Subject(s)
Chromatography, Affinity/methods , Immunoglobulin G/chemistry , Peptides/chemistry , Adsorption , Antibodies, Monoclonal/chemistry , Binding Sites , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding , Staphylococcal Protein A/metabolism , Static Electricity
6.
J Chromatogr A ; 1355: 107-14, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24947889

ABSTRACT

This work reports the development of an octapeptide-based affinity adsorbent for the purification of human IgG (hIgG) and monoclonal antibody (mAb). The octapeptide was FYWHCLDE selected earlier by the biomimetic design of affinity peptide ligands for hIgG. The ligand was coupled to Sepharose gel at four densities from 10.4 to 31.0µmol/mL, and the effect of peptide density on the adsorption of hIgG and bovine serum albumin (BSA) was first investigated. The binding capacity of hIgG increased from 104.2 to 176.4mg/mL within the ligand density range, and the binding affinity (dissociation constant) kept at 2.4-3.7µM. Batch adsorption revealed that the selectivity of FYWHCLDE-Sepharose for IgG was 30-40 times over BSA. The effective pore diffusivity of IgG decreased somewhat with increasing ligand density, but the dynamic binding capacity at 10% breakthrough, measured by using 10-fold diluted human serum as feedstock, doubled with increasing ligand density from 10.4 to 31.0µmol/mL due to the remarkable increase of static binding capacity. By using the affinity column with a ligand density of 23.9µmol/mL, hIgG and humanized mAb purifications from human serum and cell culture supernatant, respectively, were achieved at high purities and recovery yields. Finally, the robustness of the peptide gel was demonstrated by recycled use of the affinity column in 20 breakthrough cycles.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Chromatography, Affinity/methods , Immunoglobulin G/isolation & purification , Peptides/immunology , Adsorption , Animals , Antibodies, Monoclonal/immunology , Cattle , Chromatography, Affinity/instrumentation , Humans , Immunoglobulin G/immunology , Ligands , Peptides/chemistry
7.
J Sep Sci ; 37(12): 1386-95, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24723568

ABSTRACT

Efficient loading on a chromatographic column is the dilemma of the process development faced by engineers in plasmid DNA purification. In this research, novel arginine-affinity chromatographic beads were prepared to investigate the effect of spacer arm and ligand density to their chromatographic performance for the purification of plasmid. The result indicated that dynamic binding capacity for plasmid increased with an increasing ligand density and carbon number of spacer arm, and the highest binding capacity for plasmid of 6.32 mg/mL bead was observed in the column of arginine bead with a ligand density of 47 mmol/L and 10-atom carbon spacer. Furthermore, this arginine bead exhibited better selectivity to supercoiled (sc) plasmid. The evidence of a linear gradient elution suggested further that the binding of plasmid on arginine beads was driven by electrostatic interaction and hydrogen bonding. Hence, sc plasmid could successfully be purified from clarified lysate by two-stepwise elution of salt concentration. By the refinement of the elution scheme and loading volume of clarified lysate, the column of arginine bead with a ligand density of 47 mmol/L exhibited the highest recovery yield and a much higher productivity among arginine-affinity columns. Therefore, reshaped arginine beads provided more feasible and practical application in the preparation of sc plasmid from clarified lysate.


Subject(s)
Arginine/chemistry , Chromatography, Affinity/methods , DNA, Bacterial/isolation & purification , DNA, Superhelical/isolation & purification , Escherichia coli/chemistry , Plasmids/isolation & purification , Chromatography, Affinity/instrumentation , DNA, Bacterial/chemistry , DNA, Superhelical/chemistry , Ligands , Plasmids/chemistry
8.
J Sep Sci ; 36(18): 3075-85, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23857725

ABSTRACT

In this study, a novel column design with a round cross-section was proposed to be suitable for a transverse electric field (EF). Additionally, two beads for entropic interaction chromatography (EIC) were prepared by grafting glycidyl methacrylate onto Toyopearl HW-65F (T65F) beads. Solute partitioning was then investigated to elucidate the role of graft polymerization with and without an EF. In a T65F column, solute partitioning was attributed to the distinct pore structure in the beads and was governed by pore flow. Under EF, partition coefficients (Kp) for solutes decreased with increasing EF strength. In the two EIC columns, a decrease of Kp was also observed without an EF while the fractionation windows were extended. It was more pronounced in the EIC column with a high grafting density (T65F-H). This was explained by the decrease in the effective pore size of solutes caused by the steric hindrance of polymer chains. Under an EF, the solutes showed different partitioning behaviours in the T65F-H column. With increasing EF strength, Kp for vitamin B12 and myoglobin was decreased. In contrast, Kp for large solutes increased as a result of concentration polarization on the bead surface. Both behaviors were related to the modulation of graft polymerization to residual charge on the matrix and the pore size of the solutes.


Subject(s)
Chromatography/instrumentation , Entropy , Myoglobin/isolation & purification , Vitamin B 12/isolation & purification , Electromagnetic Fields , Epoxy Compounds/chemistry , Hydrogen-Ion Concentration , Methacrylates/chemistry , Myoglobin/chemistry , Polymers/chemistry , Vitamin B 12/chemistry
9.
J Chromatogr A ; 1257: 48-57, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22901622

ABSTRACT

Confocal laser scanning microscopy (CLSM) was introduced to visualize particle-scale binary component protein displacement behavior in Q Sepharose HP column. To this end, displacement chromatography of two intrinsic fluorescent proteins, enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP), were developed using sodium saccharin (NaSac) as a displacer. The results indicated that RFP as well as eGFP could be effectively displaced in the single-component experiments by 50 mmol/L NaSac at 120 and 140 mmol/L NaCl whereas a fully developed displacement train with eGFP and RFP was only observed at 120 mmol/L NaCl in binary component displacement. At 140 mmol/L NaCl, there was a serious overlapping of the zones of the two proteins, indicating the importance of induced-salt effect on the formation of an isotachic displacement train. CLSM provided particle-scale evidence that induced-salt effect occurred likewise in the interior of an adsorbent and was synchronous to the introduction of the displacer. CLSM results at 140 mmol/L NaCl also demonstrated that both the proteins had the same fading rate at 50 mmol/L NaSac in the initial stage, suggesting the same displacement ability of NaSac to both the proteins. In the final stage, the fading rate of RFP in the adsorbent became slow, particularly at lower displacer concentrations. In the binary component displacement, the two proteins exhibited distinct fading rates as compared to the single component displacement and the remarkable lagging of the fading rate was observed in protein displacements. It suggested that the co-adsorbed proteins had significant influence on the formation of an isotachic train and the displacement chromatography of the proteins. Therefore, this research provided particle-scale insight into the dynamic behavior and complexity in the displacement of proteins.


Subject(s)
Chromatography, Ion Exchange/methods , Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry , Microscopy, Confocal/methods , Adsorption , Kinetics , Saccharin/chemistry , Sodium Chloride , Red Fluorescent Protein
10.
J Sep Sci ; 35(17): 2162-73, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22888059

ABSTRACT

Simultaneous and sequential adsorption equilibria of single and binary adsorption of bovine serum albumin and bovine hemoglobin on Q Sepharose FF were investigated in different buffer constituents and initial conditions. The results in simultaneous adsorption showed that both proteins underwent competitive adsorption onto the adsorbent following greatly by protein-surface interaction. Preferentially adsorbed albumin complied with the universal rule of ion-exchange adsorption whereas buffer had no marked influence on hemoglobin adsorption. Moreover, an increase in initial ratios of proteins was benefit to a growth of adsorption density. In sequential adsorption, hemoglobin had the same adsorption densities as single-component adsorption. It was attributed to the displacement of preadsorbed albumin and multiple layer adsorption of hemoglobin. Three isothermal models (i.e. extended Langmuir, steric mass-action, and statistical thermodynamic (ST) models) were introduced to describe the ion-exchange adsorption of albumin and hemoglobin mixtures. The results suggested that extended Langmuir model gave the lowest deviation in describing preferential adsorption of albumin at a given salt concentration while steric mass-action model could very well describe the salt effect in albumin adsorption. For weaker adsorbed hemoglobin, ST model was the preferred choice. In concert with breakthrough data, the research further revealed the complexity in ion-exchange adsorption of proteins.


Subject(s)
Chromatography, Ion Exchange/methods , Hemoglobins/chemistry , Ion Exchange Resins/chemistry , Serum Albumin, Bovine/chemistry , Adsorption , Animals , Cattle , Chromatography, Ion Exchange/instrumentation , Hemoglobins/isolation & purification , Models, Theoretical , Serum Albumin, Bovine/isolation & purification , Thermodynamics
11.
J Sep Sci ; 34(21): 2950-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21953979

ABSTRACT

In the current research, a series of dextran-grafted adsorbents were prepared using sulfopropyl and 4-(1H-imidazol-1-yl) aniline as chromatographic ligands for ion-exchange (IEC) and mixed-mode chromatography (MMC) to respectively investigate the influence of dextran layer on adsorption of γ-globulin. Experimental evidences of static adsorption on dextran-grafted IEC adsorbents showed that adsorption capacity of γ-globulin increased with dextran content. It could be attributed to the multilayer adsorption of charged protein in dextran layer and thus further induced a significant electrical potential gradient at the boundary of adsorbed area and its proximity, improving mass transfer in combination with concentration gradient. In contrast to IEC adsorbents, adsorption capacity and effective diffusivity of dextran-grafted MMC adsorbents did not change obviously with dextran grafting. It was considered that hydrophobic ligands immobilized onto dextran-grafted MMC adsorbents were stuck together at pH 8.0, resulting in the collapse of dextran layer. In concert with measured effective porosity for γ-globulin at pH 4.0, it was confirmed that dextran layer in MMC adsorbent was more complicated and influenced significantly by buffer pH. It was also manifested by protein adsorption at different pHs. Thus, it revealed the complexity in intraparticle mass transfer of the protein in dextran-grafted MMC adsorbent.


Subject(s)
Aniline Compounds/chemistry , Dextrans/chemistry , gamma-Globulins/chemistry , Adsorption , Aniline Compounds/chemical synthesis , Chromatography, Ion Exchange , Surface Properties
12.
J Chromatogr A ; 1217(31): 5084-91, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20579653

ABSTRACT

A novel chromatographic medium for high-capacity protein adsorption was fabricated by grafting dextran (40kDa) onto the pore surfaces of superporous agarose (SA) beads. The bead was denoted as D-SA. D-SA, SA and homogeneous agarose (HA) beads were modified with sulfopropyl (SP) group to prepare cation exchangers, and the adsorption and uptake of lysozyme on all three cation-exchange chromatographic beads (SP-HA, SP-SA and SP-D-SA) were investigated at salt concentrations of 6-50mmol/L. Static adsorption experiments showed that the adsorption capacity of SP-D-SA (2.24mmol/g) was 78% higher than that of SP-SA (1.26mmol/g) and 54% higher than that of SP-HA (1.45mmol/g) at a salt concentration of 6mmol/L. Moreover, salt concentration had less influence on the adsorption capacity and dissociation constant of SP-D-SA than it did on SP-HA, suggesting that dextran-grafted superporous bead is a more potent architecture for chromatographic beads. In the dynamic uptake of lysozyme to the three cation-exchange beads, the D(e)/D(0) (the ratio of effective pore diffusivity to free solution diffusivity) values of 1.6-2.0 were obtained in SA-D-SA, indicating that effective pore diffusivities of SP-D-SA were about two times higher than free solution diffusivity for lysozyme. At 6mmol/L NaCl, the D(e) value in SA-D-SA (22.0x10(-11)m(2)/s) was 14.4-fold greater than that in SP-HA. Due to the superior uptake kinetics in SA-D-SA, the highest dynamic binding capacity (DBC) and adsorption efficiency (the ratio of DBC to static adsorption capacity) was likewise found in SP-D-SA. It is thus confirmed that SP-D-SA has combined the advantages of superporous matrix structure and drafted ligand chemistry in mass transport and offers a new opportunity for the development of high-performance protein chromatography.


Subject(s)
Cation Exchange Resins/chemistry , Chromatography, Ion Exchange/instrumentation , Dextrans/chemistry , Muramidase/chemistry , Sepharose/chemistry , Adsorption , Animals , Chickens , Chromatography, Ion Exchange/methods , Kinetics , Porosity
13.
Biotechnol Prog ; 26(1): 134-41, 2010.
Article in English | MEDLINE | ID: mdl-19785039

ABSTRACT

Histamine was immobilized on Sepharose CL-6B (Sepharose) for use as a ligand of hydrophobic charge induction chromatography (HCIC) of proteins. Lysozyme adsorption onto Histamine-Sepharose (HA-S) was studied by adsorption equilibrium and calorimetry to uncover the thermodynamic mechanism of the protein binding. In both the experiments, the influence of salt (ammonium sulfate and sodium sulfate) was examined. Adsorption isotherms showed that HA-S exhibited a high salt tolerance in lysozyme adsorption. This property was well explained by the combined contributions of hydrophobic interaction and aromatic stacking. The isotherms were well fitted to the Langmuir equation, and the equilibrium parameters for lysozyme adsorption were obtained. In addition, thermodynamic parameters (DeltaH(ads), DeltaS(ads), and DeltaG(ads)) for the adsorption were obtained by isothermal titration calorimetry by titrating lysozyme solutions into the adsorbent suspension. Furthermore, free histamine was titrated into lysozyme solution in the same salt-buffers. Compared with the binding of lysozyme to free histamine, lysozyme adsorption onto HA-S was characterized by a less favorable DeltaG(ads) and an unfavorable DeltaS(ads) because histamine was covalently attached to Sepharose via a three-carbon-chain spacer. Consequently, the immobilized histamine could only associate with the residues on the protein surface rather than those in the hydrophobic pocket, causing a less favorable orientation between histamine and lysozyme. Further comparison of thermodynamic parameters indicated that the unfavorable DeltaS(ads) was offset by a favorable DeltaH(ads), thus exhibiting typical enthalpy-entropy compensation. Moreover, thermodynamic analyses indicated the importance of the dehydration of lysozyme molecule and HA-S during the adsorption and a substantial conformational change of the protein during adsorption. The results have provided clear insights into the adsorption mechanisms of lysozyme onto the new HCIC material.


Subject(s)
Chromatography/methods , Histamine/chemistry , Muramidase/chemistry , Adsorption , Binding Sites , Calorimetry , Entropy , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Muramidase/metabolism , Sepharose/chemistry
14.
J Chromatogr A ; 1216(33): 6081-7, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19608188

ABSTRACT

4-(1H-imidazol-1-yl) aniline (AN) was immobilized on Sepharose CL-6B (AN-Sepharose) for use as a new ligand of mixed-mode chromatography. Adsorption equilibria of immunoglobulin G (IgG) and bovine serum albumin (BSA) to AN-Sepharose were studied at extensive pH values (4.0-8.8) and salt concentrations (0-1.0 mol/L). Static binding studies indicated that AN-Sepharose had a good salt-tolerance property for IgG adsorption up to 1.0 mol/L NaCl. This was attributed to the combined ligand-protein interactions (hydrophobic interaction, hydrogen bonding and charge transfer interaction). By contrast with BSA, AN-Sepharose showed a high binding selectivity for IgG at NaCl>0.2 mol/L. Dynamic binding capacities (DBC) of IgG and BSA at 10% breakthrough were measured at pH 4.0-8.8 by frontal analysis chromatography. IgG had DBC values over 40 mg/mL at pH 7.0-8.8, and the maximum reached 59 mg/mL at pH 8.0. At pH 5.0, a distinct drop in DBC to 8.5mg/mL was observed, but that for BSA kept over 22 mg/mL. The result suggested that IgG could be selectively desorbed from AN-Sepharose by decreasing pH to about 5. Therefore, compared to BSA, AN-Sepharose exhibited a dual-selectivity for IgG in both adsorption and elution. Purification of IgG from bovine serum also confirmed the dual-selectivity. IgG purity of the pooled fractions by elution at pH 4.0, 4.5 and 5.0 reached 55% and the highest purity, 80%, was obtained at pH 4.5. The average purification factor of IgG was over 25. The results indicate that AN is a promising ligand of mixed-mode chromatography for antibody purification from a complex feedstock.


Subject(s)
Aniline Compounds , Chromatography, Affinity , Imidazoles , Immunoglobulin G/isolation & purification , Chromatography, Agarose , Hydrogen-Ion Concentration , Ligands , Osmolar Concentration , Protein Binding , Sepharose
15.
Adv Biochem Eng Biotechnol ; 113: 217-54, 2009.
Article in English | MEDLINE | ID: mdl-19373447

ABSTRACT

Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.


Subject(s)
Chromatography, Affinity/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Muramidase/isolation & purification , Serum Albumin, Bovine/isolation & purification , Adsorption , Chromatography, Affinity/methods , Chromatography, High Pressure Liquid/methods , Electricity , Hydrostatic Pressure , Ligands , Microspheres , Porosity
16.
J Chromatogr A ; 1146(1): 32-40, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17300793

ABSTRACT

Novel superporous cellulose (SC) matrix has been fabricated by water-in-oil emulsification-thermal regeneration using granules of calcium carbonate as porogenic agents. As a control, microporous cellulose (MC) bead was fabricated in the absence of calcium carbonate. Simultaneously, double cross-linking was applied to enhance the mechanical strength of the particles. The photographs by scanning electron microscopy of the SC bead illustrated that there were more "craters" of several microns scattering on the surface of the beads. It led to a higher water content and effective porosity of the SC medium. The two beads were then modified with diethylaminoethyl (DEAE) group to prepare anion exchangers. The dynamic uptake results of bovine serum albumin (BSA) exhibited that the pore diffusivity of BSA in the DEAE-SC bead was two to three times larger than that in the DEAE-MC bead. In addition, the column packed with the DEAE-SC showed lower backpressure, higher column efficiency and dynamic binding capacity than the column packed with the DEAE-MC at a flow rate range of 150-900cm/h. Moreover, the column efficiency of the DEAE-SC column was independent of flow velocity up to a flow rate of 1200cm/h. All the results exhibited the superior characteristics of the SC bead as a potential medium for high-speed protein chromatography.


Subject(s)
Cellulose/chemistry , Chromatography, Ion Exchange/instrumentation , Chromatography, Ion Exchange/methods , Microspheres , Adsorption , Algorithms , Animals , Anion Exchange Resins/chemistry , Cattle , Cellulose/ultrastructure , Ethanolamines/chemistry , Kinetics , Microscopy, Electron, Scanning , Porosity , Reproducibility of Results , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/chemistry
17.
J Chromatogr A ; 1136(1): 19-28, 2006 Dec 08.
Article in English | MEDLINE | ID: mdl-17034803

ABSTRACT

Confocal laser scanning microscopy (CLSM) has been extensively applied in the area of protein chromatography to investigate the uptake mechanism of protein in adsorbents. However, due to the light attenuation in the deeper layers of a specimen, quantitative analysis using CLSM data is still far from reality. In this work, an attenuation equation for describing the darkening of the CLSM image in the deeper scanning layers was developed. Bovine serum albumin (BSA) adsorption to SP Sepharose FF was performed by batch adsorption and micro-column chromatography on which protein concentration in single absorbents were visualized by CLSM. The parameters in the equation were estimated by fitting it to the fluorescence intensity profiles obtained at adsorption equilibrium, and then the equation was used to simulate the effect caused by the light scattering and absorption. CLSM analysis demonstrated that BSA adsorption to SP Sepharose FF followed the shrinking core pattern and was predicted reasonably well by the pore diffusion model in combination with the attenuation equation. By comparison of the CLSM data with the simulations, it shows that the attenuation equation was useful to demonstrate the validity of an intraparticle mass transport model for the estimation of intraparticle protein concentration profiles.


Subject(s)
Cation Exchange Resins , Microscopy, Confocal/methods , Models, Theoretical , Serum Albumin, Bovine/chemistry , Adsorption
18.
J Chromatogr A ; 1103(1): 110-7, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16313916

ABSTRACT

The mass transfer of bovine serum albumin (BSA) to a cation exchanger, SP Sepharose FF, has been studied by finite batch adsorption experiments. The uptake curve was simulated with three mass transport models (i.e., effective pore diffusion model, surface diffusion model and Maxwell-Stefan model) incorporating the particle size distribution of the adsorbent particles. All the three models can simulate the uptake curves reasonably well. However, how well these models could simulate the real concentration profile within the adsorbent particle cannot be verified by the fitness of the models to the uptake curve. Thus, confocal laser scanning microscopy (CLSM) was used to visualize protein uptake to the porous adsorbent particles during the batch experiments. Using a fluorescent dye-labeled bovine serum albumin (BSA) for the dynamic adsorption experiments, the radial concentration profiles of the labeled BSA molecules into individual adsorbent particles at different times were obtained from the CLSM images. The protein distribution profiles within various particle diameters at different time were compared with the radial protein distributions predicted from the models. It reveals that surface diffusion model describes the intraparticle protein concentration profiles better than the other two models.


Subject(s)
Microscopy, Confocal/methods , Proteins/isolation & purification , Sepharose/chemistry , Adsorption , Ion Exchange , Models, Chemical , Serum Albumin, Bovine/isolation & purification
19.
Biotechnol Bioeng ; 92(5): 643-51, 2005 Dec 05.
Article in English | MEDLINE | ID: mdl-16261631

ABSTRACT

A novel superporous agarose (SA) bead characterized by the presence of wide pores has been fabricated by water-in-oil emulsification using solid granules of calcium carbonate as porogenic agent. After cross-linking, the solid granules were removed by dissolving them in hydrochloric acid. Then, the gel was modified with diethylaminoethyl groups to create an anion exchanger, SA-DEAE, for protein adsorption. A homogeneous agarose (HA) bead was also produced and modified with DEAE for comparison. It was found that the porosity of SA-DEAE was about 6% larger than that of HA-DEAE. Moreover, both optical micrographs and confocal laser scanning microscopy (CLSM) of the ion exchangers with adsorbed fluorescein isothiocyanate (FITC) labeled IgG revealed the superporous structure of the SA medium. In addition, the SA-DEAE column had lower backpressure than the HA-DEAE column, confirming the convective flow of mobile phase through the wide pores. Due to the presence of the wide pores, more channels were available for protein transport and, furthermore, more diffusive pores in the agarose network were accessible for the protein approach from different directions. This led to 40% higher protein capacity and two times higher effective pore diffusivity in the SA-DEAE than in HA-DEAE. Moreover, an increase of the efficiency of the SA-DEAE column until a flow rate of 5 cm/min and the independency of the column efficiency at flow rates from 5 to 17.8 cm/min was found, indicating that intraparticle mass transfer was intensified by convective flow at elevated flow rates. Therefore, the chromatographic resolution of IgG and BSA was little affected up to a flow rate of 17.8 cm/min. The results indicate that the SA medium is favorable for high-speed protein chromatography.


Subject(s)
Chromatography, Agarose/methods , Proteins/analysis , Proteins/chemistry , Sepharose/chemistry , Computer Systems , Porosity
20.
J Chromatogr A ; 1098(1-2): 131-7, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16314169

ABSTRACT

Ion-exchange electrochromatography with an oscillatory electric field perpendicular to mobile-phase flow driven by pressure (pIEEC) was developed with a column design of rectangle cross-section. The effect of electric field strength on the dynamic binding capacity (DBC) was examined by frontal analysis of bovine serum albumin (BSA) adsorption to the packed beds of DEAE Sepharose FF in Tris-glycine buffer (pH 8.2). It was shown that the DBC at 10% breakthrough (Q(10)) in the pIEEC increased linearly with increasing the electric field strength. For example, with a packed-bed height of 15mm and electric potential gradient of 38V/cm, Q(10) increased four times over that in normal ion-exchange chromatography. So, the transverse electric field has created significant electro-kinetic mass transports (electroosmosis and electrophoresis) that intensified exterior liquid-film and intraparticle mass transfers, leading to the increased protein binding capacity. Due to the increased capacity in the pIEEC, partial resolution of BSA and IgG under an overload condition was realized without any process optimization. The results have revealed that an electric potential gradient of 20V/cm was enough to greatly enhance the DBC in the pIEEC, and when necessary, high electric field strength can be realized with a low applied voltage because the side distance of the column is usually an order of magnitude smaller than its height. The use of low voltage to carry out electrochromatography is a significant advantage of the pIEEC over conventional electrochromatography with axial electric field.


Subject(s)
Chromatography, Ion Exchange/methods , Electrophoresis/methods , Proteins/isolation & purification , Adsorption , Electric Conductivity , Immunoglobulins/isolation & purification , Kinetics , Osmosis , Protein Binding , Serum Albumin, Bovine/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...