Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
Fish Shellfish Immunol ; 150: 109627, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754649

ABSTRACT

The yellow catfish (Pelteobagrus fulvidraco) is one of the most economically important freshwater species in Asia. However, pathogenic bacterial infections often cause high rates of mortality and economic losses in practical aquaculture. Previous studies in mammals have shown that Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) are involved in the recognition of cell wall components such as lipopolysaccharides and flagella of various bacteria, thereby acting as key regulators in the innate immunity response. However, TLR2 and TLR5 in yellow catfish have not been characterized. In the present study, TLR2 and TLR5 were examined through comparative genomic approaches. The gene structure, collinearity, protein spatial structure, and phylogenetic relationships were compared with those in multiple representative vertebrates. Meanwhile, quantitative real-time PCR was conducted to explore transcriptional changes in TLR2 and TLR5 in immune tissues after infection with exogenous A. hydrophila and E. tarda. The results demonstrated the presence of TLR2 and TLR5 in yellow catfish. However, a systematic analysis showed that TLR2 was not associated with the arrangement of diverse neighboring genes. The expression of hybrid yellow catfish TLR2 transcripts in multiple tissues (including liver, spleen, kidney, and intestine) was significantly up-regulated after infection with A. hydrophila and E. tarda, suggesting that hybrid yellow catfish TLR2 and TLR5 may participate in the immune process. Taken together, the results indicate that TLR2 and TLR5 are conserved in terms of evolution and possess significant antibacterial activity as well as regulatory properties in immune-related tissues and thus play key roles in host defense against pathogen invasion.

2.
J Agric Food Chem ; 72(21): 12057-12071, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753758

ABSTRACT

Plant growth-promoting endophytes (PGPE) can effectively regulate plant growth and metabolism. The regulation is modulated by metabolic signals, and the resulting metabolites can have considerable effects on the plant yield and quality. Here, tissue culture Houttuynia cordata Thunb., was inoculated with Rhizobium sp. (BH46) to determine the effect of BH46 on H. cordata growth and metabolism, and elucidate associated regulatory mechanisms. The results revealed that BH46 metabolized indole-3-acetic acid and induced 1-aminocyclopropane-1-carboxylate deaminase to decrease ethylene metabolism. Host peroxidase synthesis MPK3/MPK6 genes were significantly downregulated, whereas eight genes associated with auxins, cytokinins, abscisic acid, jasmonic acid, and antioxidant enzymes were significantly upregulated. Eight genes associated with flavonoid biosynthesis were significantly upregulated, with the CPY75B1 gene regulating the production of rutin and quercitrin and the HCT gene directly regulating the production of chlorogenic acid. Therefore, BH46 influences metabolic signals in H. cordata to modulate its growth and metabolism, in turn, enhancing yield and quality of H. cordata.


Subject(s)
Endophytes , Houttuynia , Plant Proteins , Houttuynia/microbiology , Houttuynia/metabolism , Houttuynia/genetics , Endophytes/metabolism , Endophytes/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Indoleacetic Acids/metabolism , Rhizobium/genetics , Rhizobium/metabolism , Flavonoids/metabolism , Abscisic Acid/metabolism , Ethylenes/metabolism , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics
3.
Biochem Biophys Res Commun ; 722: 150161, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38797153

ABSTRACT

Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.

4.
Front Genet ; 15: 1381832, 2024.
Article in English | MEDLINE | ID: mdl-38666292

ABSTRACT

Asia arowana (Scleropages formosus) is an ornamental fish with high economic value, while its sex determination mechanism is still poorly understood. By far, no morphological evidence or molecular marker has been developed for effective distinguishment of genders, which poses a critical challenge to our captive breeding efforts. In this study, we sequenced gonadal transcriptomes of adult Asian arowanas and revealed differential expression profiling of sex-related genes. Based on the comparative transcriptomics analysis of testes (n = 3) and ovaries (n = 3), we identified a total of 8,872 differentially expressed genes (DEGs) and 18,490 differentially expressed transposable elements (TEs) between male and female individuals. Interestingly, the expression of TEs usually has been more significantly testis-biased than related coding genes. As expected, several genes related to females (such as foxl2 and cyp19a1a) are significantly transcribed in the ovary, and some genes related to male gonad development (such as dmrt1, gsdf and amh) are highly expressed in the testis. This sexual dimorphism is valuable for ascertaining the differential expression patterns of sex-related genes and enriching the genetic resources of this economically important species. These valuable genetic materials thereby provide instructive references for gender identification and one-to-one breeding practices so as to expand fish numbers for a rapid elevation of economic value.

5.
Int Nurs Rev ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477788

ABSTRACT

AIM: To evaluate the mediating roles of occupational resilience and the moderationg role of perceived organizational support in the relationship between career calling and nurse burnout. BACKGROUND: Burnout is a frequent and serious problem in the field of nursing, and it poses a serious threat to both nurses' health and patient safety. Although many studies have described the links between burnout, career calling, and occupational resilience, little is known about the actual mechanisms between career calling and nurse burnout. METHODS: A cross-sectional study of 615 nurses in China was conducted using a convenience sampling method. The data were analyzed using descriptive statistics and Pearson correlation analysis. Hypotheses were tested using structural equation models and bootstrapping methods. STROBE guidelines were followed. RESULTS: Career calling was found to be negatively associated with nurse burnout, and occupational resilience mediated the relationship between career calling and burnout. Additionally, perceived organizational support was found to play a moderating role in the relationship between occupational resilience and burnout. CONCLUSION: Career calling can reduce burnout by increasing nurses' levels of occupational resilience, and perceived organizational support moderates this mechanism. Hence, policies focused on encouraging and sustaining career calling should be provided by nurse managers in order to enhance stress resistance and reduce burnout.

6.
Mar Drugs ; 22(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38393042

ABSTRACT

The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.


Subject(s)
Cnidarian Venoms , Sea Anemones , Toxins, Biological , Animals , Venoms/metabolism , Sea Anemones/metabolism , Proteomics/methods , Peptides/genetics , Peptides/metabolism , Cnidarian Venoms/chemistry
7.
Front Biosci (Landmark Ed) ; 29(2): 63, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38420816

ABSTRACT

BACKGROUND: Largemouth bass (Micropterus Salmoides) is an economically important fish species in China. Most research has focused on its growth, disease resistance, and nutrition improvement. However, the sex-determining genes in largemouth bass are still unclear. The transforming growth factor-beta (TGF-ß) gene family, including amh, amhr2 and gsdf, plays an important role in the sex determination and differentiation of various fishes. These genes are potentially involved in sex determination in largemouth bass. METHODS: We performed a systematic analysis of 5 sex-related genes (amh, amhr2, gsdf, cyp19a1, foxl2) in largemouth bass using sequence alignment, collinearity analysis, transcriptome, and quantitative real-time polymerase chain reaction (qRT-PCR). This included a detailed assessment of their sequences, gene structures, evolutionary traits, and gene transcription patterns in various tissues including gonads, and at different developmental stages. RESULTS: Comparative genomics revealed that the 5 sex-related genes were highly conserved in various fish genomes. These genes did not replicate, mutate or lose in largemouth bass. However, some were duplicated (amh, amhr2 and gsdf), mutated (gsdf) or lost (amhr2) in other fishes. Some genes (e.g., gsdf) showed significant differences in genomic sequence between males and females, which may contribute to sex determination and sex differentiation in these fishes. qRT-PCR was applied to quantify transcription profiling of the 5 genes during gonadal development and in the adult largemouth bass. Interestingly, amh, amhr2 and gsdf were predominantly expressed in the testis, while cyp19a1 and foxl2 were mainly transcribed in the ovary. All 5 sex-related genes were differentially expressed in the testes and ovaries from the 56th day post-fertilization (dpf). We therefore speculate that male/female differentiation in the largemouth bass may begin at this critical time-point. Examination of the transcriptome data also allowed us to screen out several more sex-related candidate genes. CONCLUSIONS: Our results provide a valuable genetic resource for investigating the physiological functions of these 5 sex-related genes in sex determination and gonadal differentiation, as well as in the control of gonad stability in adult largemouth bass.


Subject(s)
Bass , Animals , Female , Male , Bass/genetics , Sequence Alignment , Testis , Ovary , Transcriptome
8.
World J Clin Cases ; 12(5): 903-912, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38414598

ABSTRACT

BACKGROUND: Vestibular dysfunction (VH) is a common concomitant symptom of late peripheral vestibular lesions, which can be trauma, poisoning, infection, heredity, and neurodegeneration, but about 50% of the causes are unknown. The study uses the information-motivation-behavioral skills (IMB) model for health education, effectively improve the quality of life, increase their self-confidence, reduce anxiety and depression, and effectively improve the psychological state of patients. AIM: To explore the effect of health education based on the IMB model on the degree of vertigo, disability, anxiety and depression in patients with unilateral vestibular hypofunction. METHODS: The clinical data of 80 patients with unilateral vestibular hypofunction from January 2019 to December 2021 were selected as the retrospective research objects, and they were divided into the control group and the observation group with 40 cases in each group according to different nursing methods. Among them, the control group was given routine nursing health education and guidance, and the observation group was given health education and guidance based on the IMB model. The changes in self-efficacy, anxiety and depression, and quality of life of patients with unilateral VH were compared between the two groups. RESULTS: There was no significant difference in General Self-Efficacy Scale (GSES) scale scores between the two groups of patients before nursing (P > 0.05), which was comparable; after nursing, the GSES scale scores of the two groups were higher than those before nursing. The nursing group was higher than the control group, and the difference was statistically significant (P < 0.05). There was no significant difference in the scores of Hospital Anxiety and Depression Scale (HADS) and anxiety and depression subscales between the two groups before nursing (P > 0.05). After nursing, the HADS score, anxiety, and depression subscale scores of the two groups of patients were lower than those before nursing, and the nursing group was lower than the control group, and the difference was statistically significant (P < 0.05). After nursing, the Dizziness Handicap Inventory (DHI) scale and DHI-P, DHI-E and DHI-F scores in the two groups were decreased, and the scores in the nursing group were lower than those in the control group, and the difference was statistically significant (P < 0.05). CONCLUSION: Health education based on the IMB model can effectively improve patients' quality of life, increase self-efficacy of patients with unilateral vestibular hypofunction, enhance patients' confidence, enable patients to resume normal work and life as soon as possible, reduce patients' anxiety and depression, and effectively improve patients' psychological status.

9.
Cell Commun Signal ; 22(1): 83, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291473

ABSTRACT

BACKGROUND: Tumor cells frequently suffer from endoplasmic reticulum (ER) stress. Previous studies have extensively elucidated the role of tumorous unfolded protein response in melanoma cells, whereas the effect on tumor immunology and the underlying mechanism remain elusive. METHODS: Bioinformatics, biochemical assays and pre-clinical mice model were employed to demonstrate the role of tumorous inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in anti-tumor immunity and the underlying mechanism. RESULTS: We firstly found that IRE1α signaling activation was positively associated with the feature of tumor-infiltrating lymphocytes. Then, pharmacological ER stress induction by HA15 exerted prominent anti-tumor effect in immunocompetent mice and was highly dependent on CD8+T cells, paralleled with the reshape of immune cells in tumor microenvironment via tumorous IRE1α-XBP1 signal. Subsequently, tumorous IRE1α facilitated the expression and secretion of multiple chemokines and cytokines via XBP1-NF-κB axis, leading to increased infiltration and anti-tumor capacity of CD8+T cells. Ultimately, pharmacological induction of tumorous ER stress by HA15 brought potentiated therapeutic effect along with anti-PD-1 antibody on melanoma in vivo. CONCLUSIONS: Tumorous IRE1α facilitates CD8+T cells-dependent anti-tumor immunity and improves immunotherapy efficacy by regulating chemokines and cytokines via XBP1-NF-κB axis. The combination of ER stress inducer and anti-PD-1 antibody could be promising for increasing the efficacy of melanoma immunotherapy.


Subject(s)
Melanoma , Animals , Mice , CD8-Positive T-Lymphocytes/pathology , Chemokines , Cytokines , Endoribonucleases , Melanoma/pathology , NF-kappa B , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment
10.
Sci Data ; 11(1): 102, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253640

ABSTRACT

Deep-sea hydrothermal vents are usually considered as extreme environments with high pressure, high temperature, scarce food, and chemical toxicity, while many local inhabitants have evolved special adaptive mechanisms for residence in this representative ecosystem. In this study, we constructed a high-quality genome assembly for a novel deep-sea anemone species (Actinostola sp.) that was resident at a depth of 2,971 m in an Edmond vent along the central Indian Ocean ridge, with a total size of 424.3 Mb and a scaffold N50 of 383 kb. The assembled genome contained 265 Mb of repetitive sequences and 20,812 protein-coding genes. Taken together, our reference genome provides a valuable genetic resource for exploring the evolution and adaptive clues of this deep-sea anemone.


Subject(s)
Genome , Sea Anemones , Animals , Ecosystem , Hydrothermal Vents , Sea Anemones/genetics , Whole Genome Sequencing
11.
J Adv Res ; 58: 93-104, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37220853

ABSTRACT

INTRODUCTION: Mudskippers are a large group of amphibious fishes that have developed many morphological and physiological capacities to live on land. Genomics comparisons of chromosome-level genome assemblies of three representative mudskippers, Boleophthalmus pectinirostris (BP), Periophthalmus magnuspinnatus (PM) and P. modestus (PMO), may be able to provide novel insights into the water-to-land evolution and adaptation. METHODS: Two chromosome-level genome assemblies for BP and PM were respectively sequenced by an integration of PacBio, Nanopore and Hi-C sequencing. A series of standard assembly and annotation pipelines were subsequently performed for both mudskippers. We also re-annotated the PMO genome, downloaded from NCBI, to obtain a redundancy-reduced annotation. Three-way comparative analyses of the three mudskipper genomes in a large scale were carried out to discover detailed genomic differences, such as different gene sizes, and potential chromosomal fission and fusion events. Comparisons of several representative gene families among the three amphibious mudskippers and some other teleosts were also performed to find some molecular clues for terrestrial adaptation. RESULTS: We obtained two high-quality haplotype genome assemblies with 23 and 25 chromosomes for BP and PM respectively. We also found two specific chromosome fission events in PM. Ancestor chromosome analysis has discovered a common fusion event in mudskipper ancestor. This fusion was then retained in all the three mudskipper species. A loss of some SCPP (secretory calcium-binding phosphoprotein) genes were identified in the three mudskipper genomes, which could lead to reduction of scales for a part-time terrestrial residence. The loss of aanat1a gene, encoding an important enzyme (arylalkylamine N-acetyltransferase 1a, AANAT1a) for dopamine metabolism and melatonin biosynthesis, was confirmed in PM but not in PMO (as previously reported existence in BP), suggesting a better air vision of PM than both PMO and BP. Such a tiny variation within the genus Periophthalmus exemplifies to prove a step-by-step evolution for the mudskippers' water-to-land adaptation. CONCLUSION: These high-quality mudskipper genome assemblies will become valuable genetic resources for in-depth discovery of genomic evolution for the terrestrial adaptation of amphibious fishes.


Subject(s)
Perciformes , Water , Animals , Genomics , Fishes/genetics , Perciformes/genetics , Chromosomes
12.
Mar Drugs ; 21(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38132960

ABSTRACT

Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids. In this paper, we report the discovery of 13 novel BRICHOS-related peptides, ranging from 18 to 91 amino acid residues in length, in the cosmopolitan marine worm Heteromastus filiformis with the assistance of transcriptome mining. Two characteristic peptides with a low homology in relation to known AMPs-the α-helical amphiphilic linear peptide, consisting of 28 amino acid residues and designated as HfBRI-28, and the 25-mer ß-hairpin peptide, specified as HfBRI-25 and having a unique structure stabilized by two disulfide bonds-were obtained and analyzed as potential antimicrobials. Interestingly, both peptides showed the ability to kill bacteria via membrane damage, but mechanisms of their action and spectra of their activity differed significantly. Being non-cytotoxic towards mammalian cells and stable to proteolysis in the blood serum, HfBRI-25 was selected for further in vivo studies in a lethal murine model of the Escherichia coli infection, where the peptide contributed to the 100% survival rate in animals. A high activity against uropathogenic strains of E. coli (UPEC) as well as a strong ability to kill bacteria within biofilms allow us to consider the novel peptide HfBRI-25 as a promising candidate for the clinical therapy of urinary tract infections (UTI) associated with UPEC.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Animals , Mice , Antimicrobial Cationic Peptides/chemistry , Escherichia coli/genetics , Transcriptome , Amino Acids/genetics , Anti-Bacterial Agents/pharmacology , Mammals/metabolism
13.
Front Microbiol ; 14: 1218474, 2023.
Article in English | MEDLINE | ID: mdl-37876787

ABSTRACT

The microorganisms associated with a plant influence its growth and fitness. These microorganisms accumulate on the aerial and root surfaces of plants, as well as within the plants, as endophytes, although how the interaction between microorganisms protects the plant from pathogens is still little understood. In the current study, the impact of assembled the bacterial communities against the pathogenic fungus to promote Artemisia annua L. growths was investigated. We established a model of bacterium-fungus-plant system. Eight bacterial strains and a fungal pathogen Globisporangium ultimum (Glo) were isolated from wild A. annua roots and leaves, respectively. We assembled the six-bacteria community (C6: Rhizobium pusense, Paracoccus sp., Flavobacterium sp., Brevundimonas sp., Stenotrophomonas sp., and Bacillus sp.) with inhibition, and eight-bacteria community (C8) composing of C6 plus another two bacteria (Brevibacillus nitrificans and Cupriavidus sp.) without inhibition against Glo in individually dual culture assays. Inoculation of seedlings with C8 significantly reduced impact of Glo. The growth and disease suppression of A. annua seedlings inoculated with C8 + Glo were significantly better than those of seedlings inoculated with only Glo. C8 had more inhibitory effects on Glo, and also enhanced the contents of four metabolites in seedling roots compared to Glo treatment only. Additionally, the inhibitory effects of root extracts from A. annua seedlings showed that Glo was most sensitive, the degree of eight bacteria sensitivity were various with different concentrations. Our findings suggested that the non-inhibitory bacteria played a vital role in the bacterial community composition and that some bacterial taxa were associated with disease suppression. The construction of a defined assembled bacterial community could be used as a biological fungicide, promoting biological disease control of plants.

14.
PLoS One ; 18(10): e0293283, 2023.
Article in English | MEDLINE | ID: mdl-37903144

ABSTRACT

The mitotic regulator, Aurora kinase B (AURKB), is frequently overexpressed in malignancy and is a target for therapeutic intervention. The compound, LXY18, is a potent, orally available small molecule that inhibits the proper localization of AURKB during late mitosis, without affecting its kinase activity. In this study, we demonstrate that LXY18 elicits apoptosis in cancer cells derived from various indications, but not in non-transformed cell lines. The apoptosis is p53-independent, triggered by a prolonged mitotic arrest and occurs predominantly in mitosis. Some additional cells succumb post-mitotic slippage. We also demonstrate that cancer cell lines refractory to AURKB kinase inhibitors are sensitive to LXY18. The mitotic proteins MKLP2, NEK6, NEK7 and NEK9 are known regulators of AURKB localization during the onset of anaphase. LXY18 fails to inhibit the catalytic activity of these AURKB localization factors. Overall, our findings suggest a novel activity for LXY18 that produces a prolonged mitotic arrest and lethality in cancer cells, leaving non-transformed cells healthy. This new activity suggests that the compound may be a promising drug candidate for cancer treatment and that it can also be used as a tool compound to further dissect the regulatory network controlling AURKB localization.


Subject(s)
Aurora Kinase A , Neoplasms , Humans , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cell Death , Mitosis , Neoplasms/drug therapy , NIMA-Related Kinases
15.
Cell Mol Life Sci ; 80(11): 315, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37801083

ABSTRACT

Melanoma is the most lethal skin cancer originating from the malignant transformation of epidermal melanocyte. The dysregulation of cellular metabolism is a hallmark of cancer, including in melanoma. Aberrant branched-chain amino acids (BCAA) metabolism and related enzymes has been greatly implicated in the progression of multiple types of cancer, whereas remains far from understood in melanoma. Herein, we reported that the critical BCAA metabolism enzyme branched-chain amino acid transaminase 2 (BCAT2) is an oncogenic factor in melanoma by activating lipogenesis via the epigenetic regulation of fatty acid synthase (FASN) and ATP-citrate lyase (ACLY) expressions. Firstly, we found that BCAT2 expression was prominently increased in melanoma, and highly associated with clinical stage. Then, it was proved that the deficiency of BCAT2 led to impaired tumor cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Further, RNA sequencing technology and a panel of biochemical assays demonstrated that BCAT2 regulated de novo lipogenesis via the regulation of the expressions of both FASN and ACLY. Mechanistically, the inhibition of BCAT2 suppressed the generation of intracellular acetyl-CoA, mitigating P300-dependent histone acetylation at the promoter of FASN and ACLY, and thereby their transcription. Ultimately, zinc finger E-box binding homeobox 1 (ZEB1) was identified as the upstream transcriptional factor responsible for BCAT2 up-regulation in melanoma. Our results demonstrate that BCAT2 promotes melanoma progression by epigenetically regulating FASN and ACLY expressions via P300-dependent histone acetylation. Targeting BCAT2 could be exploited as a promising strategy to restrain tumor progression in melanoma.


Subject(s)
Melanoma , Pregnancy Proteins , Humans , Lipogenesis/genetics , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Histones/metabolism , Epigenesis, Genetic , Melanoma/genetics , Transaminases/genetics , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Minor Histocompatibility Antigens/metabolism , Fatty Acid Synthase, Type I/genetics
16.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37770059

ABSTRACT

Reef stonefish (Synanceia verrucosa) is one of the most venomous fishes, but its biomedical study has been restricted to molecular cloning and purification of its toxins, instead of high-throughput genetic research on related toxin genes. In this study, we constructed a chromosome-level haplotypic genome assembly for the reef stonefish. The genome was assembled into 24 pseudo-chromosomes, and the length totaled 689.74 Mb, reaching a contig N50 of 11.97 Mb and containing 97.8% of complete BUSCOs. A total of 24,050 protein-coding genes were annotated, of which metalloproteinases, C-type lectins, and stonustoxins (sntx) were the most abundant putative toxin genes. Multitissue transcriptomic and venom proteomic data showed that sntx genes, especially those clustered within a 50-kb region on the chromosome 2, had higher transcription levels than other types of toxins as well as those sntx genes scatteringly distributed on other chromosomes. Further comparative genomic analysis predicted an expansion of sntx-like genes in the Percomorpha lineage including nonvenomous fishes, but Scorpaenoidei species experienced extra independent sntx duplication events, marking the clear-cut origin of authentic toxic stonustoxins. In summary, this high-quality genome assembly and related comparative analysis of toxin genes highlight valuable genetic differences for potential involvement in the evolution of venoms among Scorpaeniformes fishes.


Subject(s)
Fish Venoms , Perciformes , Animals , Proteomics , Fish Venoms/genetics , Fish Venoms/toxicity , Fishes/genetics , Perciformes/genetics , Chromosomes/genetics
17.
Fish Shellfish Immunol ; 141: 109021, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633342

ABSTRACT

In mammals, fas-associated protein with death domain (FADD) is involved in the process of cell apoptosis and plays a key role in innate immune signaling. Nevertheless, its detailed molecular mechanisms underlying apoptosis and immune responses to exogenous bacterial infections in teleosts remain largely unknown. In this study, a group of 60 hybrid yellow catfish (with the body weight of 25 ± 0.5 g) were used in subsequent experiments, we examined the expression profiling of fadd gene through comparative genomics and comparative immunological methods. Our results showed that fadd in the hybrid yellow catfish (hycfadd) exhibited similar gene and spatial structures to those in other vertebrates, and formed an independent clade in phylogeny. An expression pattern analysis revealed that hycfadd widely transcribed in various tissues, with the highest transcription level in the liver. Furthermore, expression profiling of hycfadd when intraperitoneally infected with 50 µL of exogenous Aeromonas hydrophila (2.0 × 107 CFU/mL) or Edwardsiella tarda (2.0 × 107 CFU/mL) within 48 h were significantly up-regulated in the kidney, spleen, liver and intestine. Important genes in the toll like receptor (tlr) 1-tlr2- myeloid differentiation primary response 88 (MyD88)-fadd-caspase (casp) 8 cascades of TLR signaling pathway in liver were significantly up-regulated after the A. hydrophila stimulation, suggesting that apoptosis through the TLR signaling pathway may have been triggered and activated, which were further verified in the liver, kidney, spleen, intestine and gill by a TUNEL assay. Overall, this study provides solid evidence for the bacterial induction of fadd-related apoptosis in teleosts.


Subject(s)
Bacterial Infections , Catfishes , Fish Diseases , Animals , Aeromonas hydrophila/physiology , Edwardsiella tarda/genetics , Spleen/metabolism , Fish Proteins/chemistry , Gene Expression Profiling/veterinary , Gene Expression Regulation , Mammals/metabolism
18.
Sci Data ; 10(1): 511, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537173

ABSTRACT

The green microalga Haematococcus pluvialis can synthesize high amounts of astaxanthin, which is a valuable antioxidant that has been utilized in human health, cosmetics, and aquaculture. To illustrate detailed molecular clues to astaxanthin yield, we performed PacBio HIFI along with Hi-C sequencing to construct an improved chromosome-level haplotypic genome assembly with 32 chromosomes and a genome size of 316.0 Mb. Its scaffold N50 (942.6 kb) and contig N50 (304.8 kb) have been upgraded remarkably from our previous genome draft, and a total of 32,416 protein-coding genes were predicted. We also established a high-evidence phylogenetic tree from seven representative algae species, with the main aim to calculate their divergence times and identify expanded/contracted gene families. We also characterized genome-wide localizations on chromosomes of some important genes such as five BKTs (encoding beta-carotene ketolases) that are putatively involved in astaxanthin production. In summary, we reported the first chromosome-scale map of H. pluvialis, which provides a valuable genetic resource for in-depth biomedical investigations on this momentous green alga and commercial astaxanthin bioproduction.


Subject(s)
Chlorophyta , Microalgae , Humans , Chlorophyta/genetics , Chromosomes , Microalgae/genetics , Phylogeny , Genome
19.
ACS Pharmacol Transl Sci ; 6(8): 1155-1163, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588758

ABSTRACT

We investigated a novel 4-phenoxy-quinoline-based scaffold that mislocalizes the essential mitotic kinase, Aurora kinase B (AURKB). Here, we evaluated the impact of halogen substitutions (F, Cl, Br, and I) on this scaffold with respect to various drug parameters. Br-substituted LXY18 was found to be a potent and orally bioavailable disruptor of cell division, at sub-nanomolar concentrations. LXY18 prevents cytokinesis by blocking AURKB relocalization in mitosis and exhibits broad-spectrum antimitotic activity in vitro. With a favorable pharmacokinetic profile, it shows widespread tissue distribution including the blood-brain barrier penetrance and effective accumulation in tumor tissues. More importantly, it markedly suppresses tumor growth. The novel mode of action of LXY18 may eliminate some drawbacks of direct catalytic inhibition of Aurora kinases. Successful development of LXY18 as a clinical candidate for cancer treatment could enable a new, less toxic means of antimitotic attack that avoids drug resistance mechanisms.

20.
Sci Data ; 10(1): 501, 2023 07 29.
Article in English | MEDLINE | ID: mdl-37516767

ABSTRACT

Due to potentially hostile behaviors and elusive habitats, moray eels (Muraenidae) as one group of apex predators in coral reefs all across the globe have not been well investigated. Here, we constructed a chromosome-level genome assembly for the representative Reeve's moray eel (Gymnothorax reevesii). This haplotype genome assembly is 2.17 Gb in length, and 97.87% of the sequences are anchored into 21 chromosomes. It contains 56.34% repetitive sequences and 23,812 protein-coding genes, of which 96.77% are functionally annotated. This sequenced marine species in Anguilliformes makes a good complement to the genetic resource of eel genomes. It not only provides a genetic resource for in-depth studies of the Reeve's moray eel, but also enables deep-going genomic comparisons among various eels.


Subject(s)
Eels , Genome , Animals , Chromosomes/genetics , Coral Reefs , Eels/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...