Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 43(9): e2200029, 2022 May.
Article in English | MEDLINE | ID: mdl-35322486

ABSTRACT

Digital polymers with precisely arranged binary units provide an important option for information storage. This is especially true if the digital polymers are assembled in a device, as it would be of great benefit for data writing and reading in practice. Herein, inspired by the DNA microarray technique, the programmable information storing and reading on a mass spectrometry target plate is proposed. First, an array of 4-bit sequence-coded dithiosuccinimide oligomers is efficiently built through sequential thiol-maleimide Michael couplings with good sequence readability by tandem mass spectrometry (MS/MS). Then, toward engineering microarrays for information storage, a programmed robotic arm is specifically designed for precisely loading sequence-coded oligomers onto the target plate, and a decoding software is developed for efficient readout of the data from MS/MS sequencing. Notably, short sequence-coded oligomer chains can be used to write long strings of information, and extra error-correction codes are not required as usual due to the inherent concomitant fragmentation signals. Not only text but also bitimages can be automatically stored and decoded with excellent accuracy. This work provides a promising platform of digital polymers for programmable information storing and reading.


Subject(s)
Polymers , Tandem Mass Spectrometry , Polymers/chemistry , Tandem Mass Spectrometry/methods
2.
Nat Commun ; 10(1): 1918, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015480

ABSTRACT

Digital polymers with precisely ordered units acting as the coded 0- or 1-bit, are introduced as a promising option for molecular data storage. However, the pursuit of better performance in terms of high storage capacity and useful functions never stops. Herein, we propose a concept of an information-coded 2D digital dendrimer. The divergent growth via thiol-maleimide Michael coupling allows precise arrangements of the 0- and 1-bits in the uniform dendrimers. A protocol for calculating the storage capacity of non-linear binary digital dendrimer is established based on data matrix barcode, generated by the tandem mass spectrometry decoding and encryption. Furthermore, the generated data matrix barcode can be read by a common hand-held device to cater the applications such as item identification, traceability and anticouterfeiting purpose. This work demonstrates the high data storage capacity of a uniform dendrimer and uncovers good opportunities for the digital polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...