Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 13(4): 781-792, 2019 08.
Article in English | MEDLINE | ID: mdl-31059454

ABSTRACT

A fundamental technical challenge for ultra-fast cell microscopy is the tradeoff between imaging throughput and resolution. In addition to throughput, real-time applications such as image-based cell sorting further requires ultra-low imaging latency to facilitate rapid decision making on a single-cell level. Using a novel coprime line scan sampling scheme, a real-time low-latency hardware super-resolution system for ultra-fast time-stretch microscopy is presented. The proposed scheme utilizes analog-to-digital converter with a carefully tuned sampling pattern (shifted sampling grid) to enable super-resolution image reconstruction using line scan input from an optical front-end. A fully pipelined FPGA-based system is built to efficiently handle the real-time high-resolution image reconstruction process with the input subpixel samples while achieving minimal output latency. The proposed super-resolution sampling and reconstruction scheme is parametrizable and is readily applicable to different line scan imaging systems. In our experiments, an imaging latency of 0.29 µs has been achieved based on a pixel-stream throughput of 4.123 giga pixels per second, which translates into imaging throughput of approximately 120000 cells per second.


Subject(s)
Algorithms , Microscopy/methods , Cell Line, Tumor , Humans , Image Processing, Computer-Assisted
2.
J Imaging ; 5(3)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-34460462

ABSTRACT

Parallel hardware designed for image processing promotes vision-guided intelligent applications. With the advantages of high-throughput and low-latency, streaming architecture on FPGA is especially attractive to real-time image processing. Notably, many real-world applications, such as region of interest (ROI) detection, demand the ability to process images continuously at different sizes and resolutions in hardware without interruptions. FPGA is especially suitable for implementation of such flexible streaming architecture, but most existing solutions require run-time reconfiguration, and hence cannot achieve seamless image size-switching. In this paper, we propose a dynamically-programmable buffer architecture (D-SWIM) based on the Stream-Windowing Interleaved Memory (SWIM) architecture to realize image processing on FPGA for image streams at arbitrary sizes defined at run time. D-SWIM redefines the way that on-chip memory is organized and controlled, and the hardware adapts to arbitrary image size with sub-100 ns delay that ensures minimum interruptions to the image processing at a high frame rate. Compared to the prior SWIM buffer for high-throughput scenarios, D-SWIM achieved dynamic programmability with only a slight overhead on logic resource usage, but saved up to 56 % of the BRAM resource. The D-SWIM buffer achieves a max operating frequency of 329.5 MHz and reduction in power consumption by 45.7 % comparing with the SWIM scheme. Real-world image processing applications, such as 2D-Convolution and the Harris Corner Detector, have also been used to evaluate D-SWIM's performance, where a pixel throughput of 4.5 Giga Pixel/s and 4.2 Giga Pixel/s were achieved respectively in each case. Compared to the implementation with prior streaming frameworks, the D-SWIM-based design not only realizes seamless image size-switching, but also improves hardware efficiency up to 30 × .

SELECTION OF CITATIONS
SEARCH DETAIL
...