Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 110(7): 866-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20447768

ABSTRACT

Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10(5)e/nm(2) despite the fact that observable damage begins at doses as low as 10(3)e/nm(2). The resulting spatial resolution of 10nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.


Subject(s)
Body Water/chemistry , Skin/chemistry , Spectroscopy, Electron Energy-Loss/methods , Algorithms , Animals , Cryopreservation , In Vitro Techniques , Least-Squares Analysis , Nanotechnology , Proteins/chemistry , Skin/radiation effects , Skin/ultrastructure , Spectroscopy, Electron Energy-Loss/statistics & numerical data , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...