Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
2.
Food Chem Toxicol ; 101: 55-66, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28063998

ABSTRACT

Autophagy modulation has been considered a potential therapeutic strategy for head and neck squamous cell carcinoma (HNSCC). A previous study confirmed that brazilin might possess significant anti-carcinogenic activity. However, whether brazilin induces autophagy and its roles in cell death in HNSCC are still unclear. In this study, we have shown that brazilin induced significant apoptosis in the Cal27 HNSCC cell line but not in oral keratinocyte cell line (OKC). In addition to showing apoptosis induction, we demonstrated the brazilin-induced autophagic response in the Cal27 cells, as evidenced by the formation of GFP-LC3 puncta, and also showed the upregulation of LC3-II and Beclin-1. Moreover, pharmacologically or genetically blocking autophagy enhanced the brazilin-induced apoptosis, indicating the cytoprotective role of autophagy in brazilin-treated Cal27 cells. Moreover, brazilin activated nuclear factor kappa B (NF-κB p65) nuclear translocation and increased NF-κB p65 reporter activity, which contributed to the upregulation of autophagy-related genes, including LC3-II and Beclin-1. Importantly, we found that brazilin triggered reactive oxygen species (ROS) generation in Cal27 cells. Furthermore, N-acetyl-cysteine (NAC), a ROS scavenger, abrogated the effects of brazilin on the NF-κB p65-dependent autophagy. Taken together, our results demonstrated that brazilin increased the NF-κB p65-dependent autophagy through the promotion of ROS signalling pathways in HNSCC. These data also suggest that a strategy of blocking ROS-NF-κB p65-dependent autophagy to enhance the activity of brazilin warrants further attention for the treatment of HNSCC.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Benzopyrans/pharmacology , Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , NF-kappa B/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy , Humans
3.
Genet Mol Biol ; 33(1): 186-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21637625

ABSTRACT

Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects.

4.
Genet. mol. biol ; Genet. mol. biol;33(1): 186-189, 2010. tab
Article in English | LILACS | ID: lil-566131

ABSTRACT

Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects.

SELECTION OF CITATIONS
SEARCH DETAIL