Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(20): 11855-11867, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34642752

ABSTRACT

Retroviral infection requires reverse transcription, and the reverse transcriptase (RT) uses cellular tRNA as its primer. In humans, the TRMT6-TRMT61A methyltransferase complex incorporates N1-methyladenosine modification at tRNA position 58 (m1A58); however, the role of m1A58 as an RT-stop site during retroviral infection has remained questionable. Here, we constructed TRMT6 mutant cells to determine the roles of m1A in HIV-1 infection. We confirmed that tRNA3Lys m1A58 was required for in vitro plus-strand strong-stop by RT. Accordingly, infectivity of VSV-G pseudotyped HIV-1 decreased when the virus contained m1A58-deficient tRNA3Lys instead of m1A58-modified tRNA3Lys. In TRMT6 mutant cells, the global protein synthesis rate was equivalent to that of wild-type cells. However, unexpectedly, plasmid-derived HIV-1 expression showed that TRMT6 mutant cells decreased accumulation of HIV-1 capsid, integrase, Tat, Gag, and GagPol proteins without reduction of HIV-1 RNAs in cells, and fewer viruses were produced. Moreover, the importance of 5,2'-O-dimethyluridine at U54 of tRNA3Lys as a second RT-stop site was supported by conservation of retroviral genome-tRNALys sequence-complementarity, and TRMT6 was required for efficient 5-methylation of U54. These findings illuminate the fundamental importance of tRNA m1A58 modification in both the early and late steps of HIV-1 replication, as well as in the cellular tRNA modification network.


Subject(s)
HIV-1/physiology , RNA Processing, Post-Transcriptional , RNA, Transfer, Lys/metabolism , Virus Replication , Animals , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methylation , Mice , Mutation , RNA, Transfer, Lys/chemistry
2.
RNA Biol ; 18(sup1): 478-495, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34382915

ABSTRACT

RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.


Subject(s)
Autophagy , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , Nucleosides/metabolism , RNA/metabolism , Zika Virus Infection/virology , Zika Virus/physiology , Active Transport, Cell Nucleus , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative-Nucleoside Transporter 2/genetics , Humans , Nucleosides/chemistry , Nucleosides/genetics , RNA/genetics , Tumor Cells, Cultured , Virus Replication , Zika Virus Infection/genetics , Zika Virus Infection/pathology
3.
J Cancer ; 12(24): 7358-7373, 2021.
Article in English | MEDLINE | ID: mdl-35003356

ABSTRACT

Cisplatin (DDP) is the first-line chemotherapeutic agent for ovarian cancer. However, the development of DDP resistance seriously influences the chemotherapeutic effect and prognosis of ovarian cancer. It was reported that DDP can directly impinge on the mitochondria and activate the intrinsic apoptotic pathway. Herein, the role of mitochondrial dynamics in DDP chemoresistance in human ovarian cancer SKOV3 cells was investigated. In DDP-resistant SKOV3/DDP cells, mitochondrial fission protein DRP1 was down-regulated, while mitochondrial fusion protein MFN2 was up-regulated. In accordance with the expression of DRP1 and MFN2, the average mitochondrial length was significantly increased in SKOV3/DDP cells. In DDP-sensitive parental SKOV3 cells, downregulation of DRP1 and upregulation of mitochondrial fusion proteins including MFN1,2 and OPA1 occurred at day 2~6 under cisplatin stress. Knockdown of DRP1 or overexpression of MFN2 promoted the resistance of SKOV3 cells to cisplatin. Intriguingly, weaker migration capability and lower ATP level were detected in SKOV3/DDP cells. Respective knockdown of DRP1 in parental SKOV3 cells or MFN2 in SKOV3/DDP cells using siRNA efficiently reversed mitochondrial dynamics, migration capability and ATP level. Moreover, MFN2 siRNA significantly aggravated the DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3/DDP cells. In contrast, DRP1 siRNA alleviated DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3 cells. Thus, these results indicate that mitochondrial dynamics mediated by DRP1 and MFN2 contributes to the development of DDP resistance in ovarian cancer cells, and will also provide a new strategy to prevent chemoresistance in ovarian cancer by targeting mitochondrial dynamics.

4.
Mol Med Rep ; 16(4): 4521-4528, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28849115

ABSTRACT

Alzheimer's disease (AD), with a typical pathological hallmark of amyloid­beta (Aß)­containing plaques and neurofibrillary tangles, is one of the most common types of chronic neurodegenerative diseases. Aß oligomers serve a crucial role in the pathogenesis of AD, and lead to neuronal loss. However, the precise mechanism of Aß oligomers in AD remains to be elucidated. The present study demonstrated that 10 µM Aß­42 activated the caspase signaling pathway, and induced significant apoptosis in primary cultured mouse cerebral cortical neurons. The results of reverse transcription­quantitative polymerase chain reaction and western blotting demonstrated that Aß­42 (10 µM) also significantly upregulated the transcription and expression of the mitochondrial fission protein dynamin­related protein 1 (Drp1), and downregulated the transcription and expression of mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and mitochondrial dynamin like GTPase (OPA­1). Neurons were transfected with pDsRed2­Mito for mitochondrial imaging, which revealed that 10 µM Aß­42 induced mitochondrial fission in cortical neurons. In addition, 2',7'­dichlorodihydrofluorescein diacetate and tetramethylrhodamine ethyl ester staining indicated that Aß­42 increased the reactive oxygen species (ROS) level and reduced mitochondrial membrane potential in neurons. Inhibition of Drp1 activity by Mdivi­1 efficiently prevented Aß­42­induced ROS production and disruption of mitochondrial membrane potential. Loss of mitochondrial membrane potential may activate PTEN­induced putative kinase 1 (Pink1), the prominent sensor for mitochondrial damage, and trigger the process of mitophagy to remove the damaged mitochondria. In the present study, western blotting revealed that the levels of autophagy marker microtubule­associated proteins 1A/1B light chain 3B (LC3B) and Pink1 were upregulated after Aß­42 stimulation. In conclusion, these data indicated that Aß­42 induces neuronal apoptosis by targeting mitochondria, including promotion of mitochondrial fission, disruption of mitochondrial membrane potential, increasing intracellular ROS level and activation of the process of mitophagy. Therefore, mitochondria may represent a potential therapeutic target for AD in the future.


Subject(s)
Amyloid beta-Peptides/metabolism , Apoptosis , Mitochondria/metabolism , Neurons/metabolism , Amyloid beta-Peptides/pharmacology , Animals , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/genetics , Mitophagy , Molecular Imaging , Neurons/drug effects , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
5.
Oncol Rep ; 38(2): 985-992, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28677814

ABSTRACT

Leukemia is a type of hematopoietic stem cell malignant cloned disease with high mortality. Cisplatin-based chemotherapy is one of the most common treatments for leukemia. Similar to other chemotherapeutic agents, cisplatin resistance has become a serious issue in cancer therapy. In the present study, we investigated the role of mitochondrial dynamics in the antineoplastic activity of cisplatin in murine leukemia L1210 cells. Firstly, the L1210 cell line resistant to cisplatin (L1210/DDP) was established. Compared to its parental cell line, the IC50 value of cisplatin in the L1210/DDP cells was increased 10-fold. Mitofusins (Mfn1 and Mfn2), mitochondrial outer membrane fusion proteins, were markedly upregulated in the L1210/DDP cells, whereas the expression of fission protein Drp1 and inner membrane fusion protein OPA1 were not significantly altered. In addition, mitofusins were also upregulated in the parental L1210 cells subjected to cisplatin stress. To investigate the role of mitochondrial dynamics in the antineoplastic activity of cisplatin, the effect of mitochondrial division inhibitor (Mdivi)-1 on cisplatin­induced cell death, caspase-3 cleavage and ROS production was examined in L1210 cells. We found that 5 µM of Mdivi-1 efficiently attenuated cisplatin-induced cell death, caspase activation and intracellular ROS increase in L1210 cells. Our data indicated that mitochondrial dynamics play an important role in the antineoplastic activity of cisplatin, and mitofusin-mediated mitochondrial fusion may be involved in the process of cisplatin resistance in leukemia cells. Therefore, the present study revealed that mitochondrial dynamics may be a potential target used to improve the antineoplastic activity of cisplatin in leukemia in the future.


Subject(s)
Cisplatin/administration & dosage , Leukemia L1210/drug therapy , Leukemia/drug therapy , Mitochondrial Dynamics/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Caspase 3/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Humans , Leukemia/genetics , Leukemia/pathology , Leukemia L1210/genetics , Leukemia L1210/pathology , Mice , Quinazolinones/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...