Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 43(12): 2431-8, 2004 Apr 20.
Article in English | MEDLINE | ID: mdl-15119612

ABSTRACT

We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/- 15 degrees. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

2.
Opt Lett ; 28(14): 1197-9, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12885019

ABSTRACT

A hybrid photonic-crystal structure is presented as a candidate for enhancing transmission through sharp photonic-crystal waveguide bends built on a perforated dielectric slab. This structure, which we refer to as a polycrystalline structure, combines two photonic-crystal lattices. Polycrystalline photonic-crystal structures offer the ability to minimize reflections as well as mismatches that a propagating wave might encounter while undergoing a sharp corner or a discontinuity between different waveguide sections. The availability of polycrystalline structures in photonic crystals opens a broad range of possibilities for the development of optical devices. Numerical experiments are performed with two- and three-dimensional finite-difference time domain methods.

3.
Appl Opt ; 41(29): 6168-75, 2002 Oct 10.
Article in English | MEDLINE | ID: mdl-12389985

ABSTRACT

We present preoptimization strategies for improving the design of diffractive lenses in the electromagnetic domain, with few or no electromagnetic analyses. We find that improvements can be substantial, in some cases even to the point that extensive electromagnetic optimization gives only marginal additional improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...