Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2405572, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809575

ABSTRACT

The non-uniform distribution of colloidal particles in perovskite precursor results in an imbalanced response to the shear force during flexible printing process. Herein, it is observed that the continuous disordered migration occurring in perovskite inks significantly contributes to the enlargement of colloidal particles size and diminishes the crystallization activity of the inks. Therefore, a molecular encapsulation architecture by glycerol monostearate to mitigate colloidal particles collisions in the precursor ink, while simultaneously homogenizing the size distribution of perovskite colloids to minimize their diffusion disparities, is devised. The utilization of colloidal particles with a molecular encapsulation structure enables the achievement of uniform deposition during the printing process, thereby effectively balancing the crystallization rate and phase transition in the film and facilitating homogeneous crystallization of perovskite films. The large-area flexible perovskite device (1.01 cm2 and 100 cm2) fabricated through printing processes, achieves an efficiency of 24.45% and 15.87%, respectively, and manifests superior environmental stability, maintaining an initial efficiency of 91% after being stored in atmospheric ambiences for 150 days (unencapsulated). This work demonstrates that the dynamic evolution process of colloidal particles in both the precursor ink and printing process represents a crucial stride toward achieving uniform crystallization of perovskite films.

2.
Chem Commun (Camb) ; 58(27): 4352-4355, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35293912

ABSTRACT

Condensed π-conjugation C-PAN/MS-CN nanotubes were obtained via a facile polyacrylonitrile (PAN)-confined molten salt (MS) thermal condensation of melamine. Carbonized PAN (C-PAN) nanosheets with a conjugate network structure in the molten salt system acted as partition plates confining the thermal condensation of melamine, which promoted the formation of condensed π-conjugation carbon nitride (CN) for the effective charge carrier separation and photocatalytic H2 evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...