Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 704: 149660, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38428303

ABSTRACT

Soybean is an economically important crop, which often suffers various abiotic stresses. REVEILLE (RVE) genes have been generally considered as circadian oscillators to mediate diverse developmental processes and plant response to environmental stresses. Addressing their roles is of significance for utilizing them to enhance agronomic traits in crops. However, our understanding of soybean RVEs is extremely limited. In the study, we investigated the expression patterns of soybean CCA1-like genes under salt stress using our RNA-Seq data. Subsequently, a salt stress-inducible gene, GmRVE8a, was chosen for further study. Phylogenetic analysis indicated that GmRVE8a is most closely related to Arabidopsis RVE4 and RVE8. Also, GmRVE8a showed circadian expression pattern with 24 h rhythmic period, suggesting that it might be a clock-regulated gene. Moreover, transgenic Arabidopsis lines over-expressing GmRVE8a were generated. It was observed that ectopic over-expression of GmRVE8a caused a significant delay in flowering. Further observation indicated that under salt and drought stress, transgenic seedlings were stronger than wild type. Consistently, three-week-old transgenic plants grew better than wild type under salt and drought conditions, and the MDA content in transgenic lines was significantly lower than wild type, suggesting that GmRVE8a might be a positive regulator in response to salt and drought stress. Intriguingly, Y2H assay indicated that GmRVE8a physically interacted with a drought-tolerant protein, GmNAC17. Overall, our findings provided preliminary information regarding the functional roles of GmRVE8a in response to salt and drought stress.


Subject(s)
Arabidopsis , Glycine max , Glycine max/genetics , Arabidopsis/metabolism , Drought Resistance , Phylogeny , Salt Stress/genetics , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Droughts , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
BMC Genomics ; 23(1): 820, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510141

ABSTRACT

BACKGROUND: BBX genes are key players in the regulation of various developmental processes and stress responses, which have been identified and functionally characterized in many plant species. However, our understanding of BBX family was greatly limited in soybean. RESULTS: In this study, 59 BBX genes were identified and characterized in soybean, which can be phylogenetically classified into 5 groups. GmBBXs showed diverse gene structures and motif compositions among the groups and similar within each group. Noticeably, synteny analysis suggested that segmental duplication contributed to the expansion of GmBBX family. Moreover, our RNA-Seq data indicated that 59 GmBBXs showed different transcript profiling under salt stress, and qRT-PCR analysis confirmed their expression patterns. Among them, 22 GmBBXs were transcriptionally altered with more than two-fold changes by salt stress, supporting that GmBBXs play important roles in soybean tolerance to salt stress. Additionally, Computational assay suggested that GmBBXs might potentially interact with GmGI3, GmTOE1b, GmCOP1, GmCHI and GmCRY, while eight types of transcription factors showed potentials to bind the promoter regions of GmBBX genes. CONCLUSIONS: Fifty-nine BBX genes were identified and characterized in soybean, and their expression patterns under salt stress and computational assays suggested their functional roles in response to salt stress. These findings will contribute to future research in regard to functions and regulatory mechanisms of soybean BBX genes in response to salt stress.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Glycine max/genetics , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Salt Stress/genetics , Phylogeny , Stress, Physiological/genetics
3.
BMC Genomics ; 23(1): 329, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477362

ABSTRACT

BACKGROUND: Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. RESULTS: In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5'UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19-4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. CONCLUSIONS: Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress.


Subject(s)
Blueberry Plants , Indoleacetic Acids , Blueberry Plants/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Hydrogen-Ion Concentration , Indoleacetic Acids/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Physiol Plant ; 172(2): 733-747, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33215699

ABSTRACT

As a conserved microRNA (miRNA) family in plants, miR408 is known to be involved in different abiotic stress responses, including drought. Interestingly, some studies indicated a species- and/or cultivar-specific drought-responsive characteristic of miR408 in plant drought stress. Moreover, the functions of miR408 in perennial grass species are unknown. In this study, we investigated the role of miR408 in perennial ryegrass (Lolium perenne L.) by withholding water for 10 days for both wild type and transgenic plants with heterologous expression of rice (Oryza sativa L.) miR408 gene, Os-miR408. The results showed that transgenic perennial ryegrass plants displayed morphological changes under normal growth conditions, such as curl leaves and sunken stomata, which could be related to decreased leaf water loss. Moreover, transgenic perennial ryegrass exhibited improved drought tolerance, as demonstrated by maintaining higher leaf relative water content (RWC), lower electrolyte leakage (EL), and less lipid peroxidation compared to WT plants under drought stress. Furthermore, the transgenic plants showed higher antioxidative capacity under drought. These results showed that the improved drought tolerance in Os-miR408 transgenic plants could be due to leaf morphological changes favoring the maintenance of water status and to increased antioxidative capacity protecting against the reactive oxygen species damages under stress. These findings implied that miR408 could serve as a potential target for genetic manipulations to engineer perennial grass plants for improved water stress tolerance.


Subject(s)
Droughts , Lolium , MicroRNAs/genetics , Stress, Physiological , Gene Expression Regulation, Plant , Lolium/genetics , Lolium/metabolism , Oryza/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
5.
Int J Mol Sci ; 20(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766598

ABSTRACT

Watermelon fruit contains a high percentage of amino acid citrulline (Cit) and arginine (Arg). Cit and Arg accumulation in watermelon fruit are most likely mediated by both de novo synthesis from other amino acids within fruits and direct import from source tissues (leaves) through the phloem. The amino acid transporters involved in the import of Cit, Arg, and their precursors into developing fruits of watermelon have not been reported. In this study, we have compiled the list of putative amino acid transporters in watermelon and characterized transporters that are expressed in the early stage of fruit development. Using the yeast complementation study, we characterized ClAAP3 (Cla023187) and ClAAP6 (Cla023090) as functional amino acid transporters belonging to the family of amino acid permease (AAP) genes. The yeast growth and uptake assays of radiolabeled amino acid suggested that ClAAP3 and ClAAP6 can transport a broad spectrum of amino acids. Expression of translational fusion proteins with a GFP reporter in Nicotiana benthamiana leaves confirmed the ER- and plasma membrane-specific localization, suggesting the role of ClAAP proteins in the cellular import of amino acids. Based on the gene expression profiles and functional characterization, ClAAP3 and ClAAP6 are expected to play a major role in regulation of amino acid import into developing watermelon fruits.


Subject(s)
Amino Acid Transport Systems/biosynthesis , Citrullus/metabolism , Fruit/metabolism , Plant Proteins/biosynthesis , Amino Acid Transport Systems/genetics , Arginine/genetics , Arginine/metabolism , Citrulline/genetics , Citrulline/metabolism , Citrullus/genetics , Fruit/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Substrate Specificity , Nicotiana/genetics , Nicotiana/metabolism
6.
Front Plant Sci ; 8: 1032, 2017.
Article in English | MEDLINE | ID: mdl-28680431

ABSTRACT

Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...