Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 30(3): 986-994, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30912392

ABSTRACT

The exploitation and utilization of mineral materials during urban construction causes a large amount of carbon emission, but could also contribute to carbon sequestration. In the related literature, carbon sequestration process of building mineral materials has received limited attention and scientific quantification. On the basis of extracting building capacity and identifying building types, we used the technology of remote sensing image shadow height inversion to quantify mineral material consumption and carbon content parameters. Carbonization rate was measured by thermogravimetric analysis (TGA). Finally, a calculation method for carbon sink in urban buildings was constructed. We investigated the uncertainty of this method with Puhe New Town in Shenyang as an example. The results showed that the order of carbon sink density of different types of buildings followed the order of residential buildings > public service buildings > other types of buildings > commercial and financial buildings > industrial buildings; the ratio of carbon sink volumetric in diffe-rent types of construction land followed the order of commercial and financial buildings > residential buildings > public service buildings > other types of buildings > industrial buildings. The carbon sink calculation method based on the urban scale of building capacity in this study could quickly and accurately estimate the magnitude of carbon sinks from the inorganic materials in various types of urban construction lands. Under the background of limited urban natural carbon sequestration, using building carbon sequestration to enhance the urban carbon sequestration could provide new ideas for the low-carbon development of cities in China.


Subject(s)
Carbon Sequestration , Carbon , China , Cities
2.
Ying Yong Sheng Tai Xue Bao ; 29(10): 3357-3366, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30325161

ABSTRACT

Low impact development (LID) of industrial parks is an important component in the construction of China's sponge cities. We compared the methods of optimizing ecological spatial structure for rain and flood control in industrial parks, via analyzing the influence of landscape pattern on hydrological process. Firstly, according to the hydrological and geological conditions of the coastal area, the landscape pattern of the industrial park was optimized, with the water corridor system being structured and green patches being integrated. Then, the reasonable spatial allocation for the ecological infrastructure of the industrial park was realized, with the rain and flood control areas being divided based on the characteristics of the underlying surface. The runoff control indices of different control areas were determined, and the LID technical measures of different landscape nodes were selected. The results showed that the landscape pattern optimization strengthened landscape connectivity by constructing the ecological network within the industrial park. The runoff control rate of the park increased from 45% to 70% through the combination of various LID technologies, with the pervious pavement, submerged green space, rainwater garden, wet pond and grass ditch accounting for 1.3%, 1.9%, 0.2%, 0.2% and 0.1% of the total area, respectively. This study could provide new ideas and methods for the low impact development and construction of coastal industrial parks.


Subject(s)
Ecosystem , China , Cities , City Planning , Conservation of Natural Resources , Floods , Industry , Oceans and Seas , Rain
3.
Ying Yong Sheng Tai Xue Bao ; 22(3): 734-40, 2011 Mar.
Article in Chinese | MEDLINE | ID: mdl-21657032

ABSTRACT

Based on the theory of landscape ecological security pattern and the RS and GIS techniques, this paper analyzed the distribution of ecological security grades in Nanchong City, taking six elements including terrain condition, flood hazard, soil erosion, vegetation cover, geological disaster, and biological protection as the ecological constraints (or determinants) of urban expansion. According to the minimum cumulative resistance model, the ecological corridors and ecological nodes were built to strengthen the space contact of ecological network, and, on the basis of the protection of ecological safety, the reasonable trend of urban expansion and the optimization of space layout were investigated. The results showed that the ecological security of Nanchong City was quite good, with the regions of low ecological security mainly distributed in the west suburban mountains and the downstream region of Jialing River in the south of the City. Ecological elements were the most important constraints for the future expansion of urban space. There were more spaces for the urban expansion in the southern and northern parts of Nanchong City. To develop satellite towns would be the best selection to guarantee the ecological security of the city.


Subject(s)
City Planning , Conservation of Natural Resources , Ecosystem , Urbanization , China , Safety
4.
Ying Yong Sheng Tai Xue Bao ; 22(12): 3307-14, 2011 Dec.
Article in Chinese | MEDLINE | ID: mdl-22384602

ABSTRACT

Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.


Subject(s)
City Planning , Conservation of Natural Resources/methods , Ecosystem , Geographic Information Systems , Models, Theoretical , Air Pollution/analysis , China , Cities
5.
Ying Yong Sheng Tai Xue Bao ; 21(3): 707-13, 2010 Mar.
Article in Chinese | MEDLINE | ID: mdl-20560329

ABSTRACT

Based on the five temporal Landsat TM remote sensing data of 1988, 1992, 1997, 2000, and 2004, and by using GIS spatial analysis and landscape pattern analysis, this paper analyzed the spatiotemporal pattern of urban growth and its driving forces in the urban agglomeration of central Liaoning Province (UACLP). From 1988 to 2004, the urban area in the UACLP had being increased from 812.55 km2 to 1345.86 km2, with an average growth rate of 32.96 km2 per year. The urban growth rate increased rapidly after 1997, and the urban growth intensity was up to the peak in 1997-2000. The urban growth was mainly concentrated in the central dense belt of the UACLP. From 1988 to 1997, the urban growth was relatively slow, its spatial pattern was compact, and edge growth and filling were the main urban growth types. From 1997 to 2004, the urban growth became faster with diffused spatial pattern and complex patch shape, and "frog leap" and diffusion were the main urban growth types. Non-agricultural population growth, economic growth, urban spatial mutual attraction, industrial development, and development zones construction policies were the main driving forces of urban growth in the UACLP.


Subject(s)
City Planning , Ecosystem , Environmental Monitoring/methods , Urbanization , China , Cities , Conservation of Natural Resources/methods , Geographic Information Systems , Satellite Communications
SELECTION OF CITATIONS
SEARCH DETAIL
...