Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Immun Inflamm Dis ; 11(9): e999, 2023 09.
Article in English | MEDLINE | ID: mdl-37773701

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a great threat to human health. Some severe COVID-19 patients still carried detectable levels of SARS-CoV-2 even after prolonged intensive care unit treatment. However, the immunological features of these COVID-19 patients with delayed virus clearance (CDVC) are still unclear. METHODS: We retrospectively reviewed the clinical and immunological data of 13 CDVC cases, who were admitted into one hospital in Wuhan from February to April 2020. These data were also compared to those of perished (n = 9) and recovered (n = 52) cases. The expression of the exhaustion marker PD-1 on circulating T cells of these patients was measured by flow cytometry. RESULTS: High levels of serum interleukin-6 (IL-6), IL-1ß, IL-8, as well as other inflammatory mediators, were seen in CDVC cases. Severe lymphopenia was observed in CDVC patients with the counts of total lymphocytes (0.9 × 109 /L), CD4+ T cells (0.35 × 109 /L), and CD8+ T cells (0.28 × 109 /L) below their corresponding lower limits of normal range. Similar to the perished group, CDVC cases have higher percentages of CD25+ Foxp3+ regulatory T cells (Treg) in circulation. Moreover, enhanced expression of the exhaustion marker PD-1 on CCR7- CD45RA+ effector, CCR7+ CD45RA- central memory, and CCR7- CD45RA- effector memory CD4+ and CD8+ T cells were also observed in CDVC cases. CONCLUSION: CDVC patients still have SARS-CoV-2 and these cases manifest with severe clinical symptoms due to persistent inflammation. Augmentation of the frequency of circulating Treg, severe lymphopenia, and functional exhaustion of T cells might lead to inefficient clearance of SARS-CoV-2. Therefore, enhancing lymphocyte counts and reversing T-cell exhaustion might be key methods to boost immune responses and eliminate SARS-CoV-2 in CDVC patients.


Subject(s)
COVID-19 , Lymphopenia , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Retrospective Studies , Programmed Cell Death 1 Receptor , Receptors, CCR7
2.
Oncogenesis ; 12(1): 22, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37080999

ABSTRACT

Anti-PD-1 therapy has shown promising outcomes in the treatment of different types of cancer. It is of fundamental interest to analyze the efficacy of anti-PD-1 therapy in cancer patients infected with hepatitis B virus (HBV) since the comorbidity of HBV and cancer is widely documented. We designed a multicenter retrospective study to evaluate the efficacy of anti-PD-1 therapy on non-liver cancer patients infected with HBV. We found anti-PD-1 therapy achieved much better outcomes in HBV+ non-liver cancer patients than their HBV- counterparts. We performed single-cell RNA sequencing (scRNA-seq) on peripheral blood mononuclear cells (PBMCs) from esophageal squamous cell carcinoma (ESCC) patients. We found both cytotoxicity score of T cells and MHC score of B cells significantly increased after anti-PD-1 therapy in HBV+ ESCC patients. We also identified CX3CR1high TEFF, a subset of CD8+ TEFF, associated with better clinical outcome in HBV+ ESCC patients. Lastly, we found CD8+ TEFF from HBV+ ESCC patients showing higher fraction of Exhaustionhi T than their HBV- counterpart. In summary, anti-PD-1 therapy on HBV+ non-liver cancer patients is safe and achieves better outcomes than that on HBV- non-liver cancer patients, potentially because HBV+ patients had higher fraction of Exhaustionhi T, which made them more efficiently respond to anti-PD-1 therapy.

3.
Front Genet ; 14: 1075347, 2023.
Article in English | MEDLINE | ID: mdl-36816040

ABSTRACT

Hepatocellular carcinoma (HCC) is a clinically and genetically heterogeneous disease. To better describe the clinical value of the main driver gene mutations of HCC, we analyzed the whole exome sequencing data of 125 patients, and combined with the mutation data in the public database, 14 main mutant genes were identified. And we explored the correlation between the main mutation genes and clinical features. Consistent with the results of previous data, we found that TP53 and LRP1B mutations were related to the prognosis of our patients by WES data analysis. And we further explored the associated characteristics of TP53 and LRP1B mutations. However, it is of great clinical significance to tailor a unique prediction method and treatment plan for HCC patients according to the mutation of TP53. For TP53 wild-type HCC patients, we proposed a prognostic risk model based on 11 genes for better predictive value. According to the median risk score of the model, HCC patients with wild-type TP53 were divided into high-risk and low-risk groups. We found significant transcriptome changes in the enrichment of metabolic-related pathways and immunological characteristics between the two groups, suggesting the predictability of HCC immunotherapy by using this model. Through the CMap database, we found that AM580 had potential therapeutic significance for high-risk TP53 wild-type HCC patients.

4.
Mol Plant Pathol ; 22(5): 522-538, 2021 05.
Article in English | MEDLINE | ID: mdl-33675158

ABSTRACT

Fusarium oxysporum is an important soilborne fungal pathogen with many different formae speciales that can colonize the plant vascular system and cause serious crop wilt disease worldwide. We found a glycoside hydrolase family 12 protein FoEG1, secreted by F. oxysporum, that acted as a pathogen-associated molecular pattern (PAMP) targeting the apoplast of plants to induce cell death. Purified FoEG1 protein triggered cell death in different plants and induced the plant defence response to enhance the disease resistance of plants. The ability of FoEG1 to induce cell death was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1, and this ability was independent of its hydrolase activity. The mutants of cysteine residues did not affect the ability of FoEG1 to induce cell death, and an 86 amino acid fragment from amino acid positions 144 to 229 of FoEG1 was sufficient to induce cell death in Nicotiana benthamiana. In addition, the expression of FoEG1 was strongly induced in the early stage of F. oxysporum infection of host plants, and FoEG1 deletion or loss of enzyme activity reduced the virulence of F. oxysporum. Therefore, our results suggest that FoEG1 can contribute to the virulence of F. oxysporum depending on its enzyme activity and can also act as a PAMP to induce plant defence responses.


Subject(s)
Fusarium/enzymology , Glycoside Hydrolases/metabolism , Nicotiana/microbiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/microbiology , Plant Immunity , Cell Death , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/genetics , Fusarium/pathogenicity , Glycoside Hydrolases/genetics , Plant Diseases/immunology , Nicotiana/immunology , Virulence
5.
Int J Mol Sci ; 20(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30987045

ABSTRACT

Secreted effectors from Magnaporthe oryzae play critical roles in the interaction with rice to facilitate fungal infection and disease development. M. oryzae-secreted protein MoHrip1 can improve plant defense as an elicitor in vitro, however, its biological function in fungal infection is not clear. In this study, we found that the expression of mohrip1 was significantly induced in the stages of fungal penetration and colonization. Although dispensable for the growth and conidiation, MoHrip1 was necessary for the full virulence of M. oryzae. Deletion of mohrip1 remarkably compromised fungal virulence on rice seedlings and even on rice leaves with wounds. Rice sheath inoculation assay further demonstrated the defects of mohrip1-deleted mutants on penetration and proliferation in rice cells. Additionally, compared with WT and complementation strain, the inoculation of mohrip1-deleted mutants induced a higher expression of specific defense related genes and a higher production of specific defensive compounds in rice leaves. These data collectively indicated that MoHrip1 is necessary for fungal penetration and invasive expansion, and further full virulence of rice blast fungus.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/metabolism , Magnaporthe/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genes, Plant , Magnaporthe/growth & development , Magnaporthe/physiology , Mutation/genetics , Oryza/genetics , Oryza/immunology , Oryza/microbiology , Plant Immunity , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...