Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Adv Res ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37406731

ABSTRACT

INTRODUCTION: Folic acid (FA) is a critical metabolite in all living organisms and an important nutritional component of broccoli. Few studies have been conducted on the impact of an exogenous application of FA on the postharvest physiology of fruits and vegetables during storage. In this regard, the mechanism by which an exogenous application of FA extends the postharvest quality of broccoli is unclear. OBJECTIVE: This study utilized a multicomponent analysis to investigate how an exogenous application of FA effects the postharvest quality of broccoli. METHODS: Broccoli was soaked in 5 mg/L FA for 10 min and the effect of the treatment on the appearance and nutritional quality of broccoli was evaluated. These data were combined with transcriptomic, metabolomic, and DNA methylation data to provide insight into the potential mechanism by which FA delays senescence. RESULTS: The FA treatment inhibited the yellowing of broccoli during storage. CHH methylation was identified as the main type of methylation that occurs in broccoli and the FA treatment was found to inhibit DNA methylation, promote the accumulation of endogenous FA and chlorophyl, and inhibit ethylene biosynthesis in stored broccoli. The FA treatment also prevented the formation of off-odors by inhibiting the degradation of glucosinolate. CONCLUSIONS: FA treatment inhibited the loss of nutrients during the storage of broccoli, delayed its yellowing, and inhibited the generation of off-odors. Our study provides deeper insight into the mechanism by which the postharvest application of FA delays postharvest senescence in broccoli and provides the foundation for further studies of postharvest metabolism in broccoli.

2.
Foods ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34945515

ABSTRACT

This study examines ultraviolet-C (UV-C) treatment supplementation as a means of inhibiting the senescence of pepino fruit after harvest. Pepino fruits were subjected to 1.5 kJ/m2 UV-C treatments and then packed and stored at 10 °C for 28 d. Results showed that 1.5 kJ/m2 UV-C treatment had the greatest ability to maintain firmness, and reduced the level of respiration and ethylene production. Further analysis indicated that the 1.5 kJ/m2 UV-C treatment maintained the content of total soluble solids (TSS), chlorophyll, vitamin C, flavonoids, and total phenolics. Lower levels of malondialdehyde (MDA) and higher levels of antioxidant enzyme activity were found in UV-C treated fruit during storage. An electronic nose (E-nose) and headspace-gas chromatography-mass spectrometry (HS-GC-MS) was used to determine volatile compounds. Results revealed that the UV-C treatment may promote the synthesis of a large number of alcohols and esters by maintaining the overall level of acids, aldehydes, and esters in fruits. This may contribute to the maintenance of the flavor of harvested fruits. In conclusion, 1.5 kJ/m2 UV-C treatment was demonstrated to be an effective treatment for the maintenance of the sensory, nutritional, and flavor parameters of pepino fruit.

SELECTION OF CITATIONS
SEARCH DETAIL