Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 13(1): 53-59, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29185700

ABSTRACT

A DNA-encoded macrocyclic peptide library was designed and synthesized with 2.4 × 1012 members composed of 4-20 natural and non-natural amino acids. Affinity-based selection was performed against two therapeutic targets, VHL and RSV N protein. On the basis of selection data, some peptides were selected for resynthesis without a DNA tag, and their activity was confirmed.


Subject(s)
Peptide Library , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Viral Proteins/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Amino Acids/chemistry , DNA/chemistry , Drug Evaluation, Preclinical/methods , Molecular Targeted Therapy , Peptides, Cyclic/genetics , Polymerase Chain Reaction , Respiratory Syncytial Viruses , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Von Hippel-Lindau Tumor Suppressor Protein/chemistry
2.
Proc Natl Acad Sci U S A ; 110(36): E3445-54, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23946421

ABSTRACT

Stapled α-helical peptides have emerged as a promising new modality for a wide range of therapeutic targets. Here, we report a potent and selective dual inhibitor of MDM2 and MDMX, ATSP-7041, which effectively activates the p53 pathway in tumors in vitro and in vivo. Specifically, ATSP-7041 binds both MDM2 and MDMX with nanomolar affinities, shows submicromolar cellular activities in cancer cell lines in the presence of serum, and demonstrates highly specific, on-target mechanism of action. A high resolution (1.7-Å) X-ray crystal structure reveals its molecular interactions with the target protein MDMX, including multiple contacts with key amino acids as well as a role for the hydrocarbon staple itself in target engagement. Most importantly, ATSP-7041 demonstrates robust p53-dependent tumor growth suppression in MDM2/MDMX-overexpressing xenograft cancer models, with a high correlation to on-target pharmacodynamic activity, and possesses favorable pharmacokinetic and tissue distribution properties. Overall, ATSP-7041 demonstrates in vitro and in vivo proof-of-concept that stapled peptides can be developed as therapeutically relevant inhibitors of protein-protein interaction and may offer a viable modality for cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Peptides/therapeutic use , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Binding, Competitive , Cell Line, Tumor , Crystallography, X-Ray , Female , HCT116 Cells , Humans , MCF-7 Cells , Male , Mice , Mice, Nude , Models, Molecular , Neoplasms/metabolism , Neoplasms/pathology , Peptides/chemistry , Peptides/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Peptides, Cyclic/therapeutic use , Protein Binding , Protein Conformation , Protein Structure, Secondary , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Rats , Rats, Long-Evans , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...