Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Theor Appl Genet ; 137(8): 178, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976061

ABSTRACT

KEY MESSAGE: Three QTLs associated with low-temperature tolerance were identified by genome-wide association analysis, and 15 candidate genes were identified by haplotype analysis and gene expression analyses. Low temperature is a critical factor affecting the geographical distribution, growth, development, and yield of soybeans, with cold stress during seed germination leading to substantial productivity loss. In this study, an association panel comprising 260 soybean accessions was evaluated for four germination traits and four cold tolerance index traits, revealing extensive variation in cold tolerance. Genome-wide association study (GWAS) identified 10 quantitative trait nucleotides (QTNs) associated with cold tolerance, utilizing 30,799 single nucleotide polymorphisms (SNPs) and four GWAS models. Linkage disequilibrium (LD) analysis positioned these QTNs within three cold-tolerance quantitative trait loci (QTL) and, with QTL19-1, was positioned by three multi-locus models, underscoring its importance as a key QTL. Integrative haplotype analysis, supplemented by transcriptome analysis, uncovered 15 candidate genes. The haplotypes within the genes Glyma.18G044200, Glyma.18G044300, Glyma.18G044900, Glyma.18G045100, Glyma.19G222500, and Glyma.19G222600 exhibited significant phenotypic variations, with differential expression in materials with varying cold tolerance. The QTNs and candidate genes identified in this study offer substantial potential for marker-assisted selection and gene editing in breeding cold-tolerant soybeans, providing valuable insights into the genetic mechanisms underlying cold tolerance during soybean germination.


Subject(s)
Cold Temperature , Germination , Glycine max , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Glycine max/genetics , Glycine max/growth & development , Germination/genetics , Genome-Wide Association Study , Phenotype , Genetic Association Studies , Chromosome Mapping/methods , Genes, Plant
2.
Nat Commun ; 15(1): 6074, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025911

ABSTRACT

One-dimensional metallic transition-metal chalcogenide nanowires (TMC-NWs) hold promise for interconnecting devices built on two-dimensional (2D) transition-metal dichalcogenides, but only isotropic growth has so far been demonstrated. Here we show the direct patterning of highly oriented Mo6Te6 NWs in 2D molybdenum ditelluride (MoTe2) using graphite as confined encapsulation layers under external stimuli. The atomic structural transition is studied through in-situ electrical biasing the fabricated heterostructure in a scanning transmission electron microscope. Atomic resolution high-angle annular dark-field STEM images reveal that the conversion of Mo6Te6 NWs from MoTe2 occurs only along specific directions. Combined with first-principles calculations, we attribute the oriented growth to the local Joule-heating induced by electrical bias near the interface of the graphite-MoTe2 heterostructure and the confinement effect generated by graphite. Using the same strategy, we fabricate oriented NWs confined in graphite as lateral contact electrodes in the 2H-MoTe2 FET, achieving a low Schottky barrier of 11.5 meV, and low contact resistance of 43.7 Ω µm at the metal-NW interface. Our work introduces possible approaches to fabricate oriented NWs for interconnections in flexible 2D nanoelectronics through direct metal phase patterning.

3.
Metabolites ; 14(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921457

ABSTRACT

Acetate is an important metabolite in metabolic fluxes. Its presence in biological entities originates from both exogenous inputs and endogenous metabolism. Because the change in blood acetate level has been associated with both beneficial and adverse health outcomes, blood acetate analysis has been used to monitor the systemic status of acetate turnover. The present study examined the use of urinary N-acetyltaurine (NAT) as a marker to reflect the hyperacetatemic status of mice from exogenous inputs and endogenous metabolism, including triacetin dosing, ethanol dosing, and streptozotocin-induced diabetes. The results showed that triacetin dosing increased serum acetate and urinary NAT but not other N-acetylated amino acids in urine. The co-occurrences of increased serum acetate and elevated urinary NAT were also observed in both ethanol dosing and streptozotocin-induced diabetes. Furthermore, the renal cortex was determined as an active site for NAT synthesis. Overall, urinary NAT behaved as an effective marker of hyperacetatemia in three experimental mouse models, warranting further investigation into its application in humans.

4.
Nat Plants ; 10(5): 736-742, 2024 May.
Article in English | MEDLINE | ID: mdl-38724696

ABSTRACT

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.


Subject(s)
Glycine max , Plant Root Nodulation , Glycine max/genetics , Glycine max/metabolism , Glycine max/microbiology , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Symbiosis , Nitrogen Fixation/genetics , Gene Editing , Mutation , Plant Proteins/metabolism , Plant Proteins/genetics , Soybean Proteins/genetics , Soybean Proteins/metabolism
5.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732474

ABSTRACT

Genomic selection (GS) is a marker-based selection method used to improve the genetic gain of quantitative traits in plant breeding. A large number of breeding datasets are available in the soybean database, and the application of these public datasets in GS will improve breeding efficiency and reduce time and cost. However, the most important problem to be solved is how to improve the ability of across-population prediction. The objectives of this study were to perform genomic prediction (GP) and estimate the prediction ability (PA) for seed oil and protein contents in soybean using available public datasets to predict breeding populations in current, ongoing breeding programs. In this study, six public datasets of USDA GRIN soybean germplasm accessions with available phenotypic data of seed oil and protein contents from different experimental populations and their genotypic data of single-nucleotide polymorphisms (SNPs) were used to perform GP and to predict a bi-parent-derived breeding population in our experiment. The average PA was 0.55 and 0.50 for seed oil and protein contents within the bi-parents population according to the within-population prediction; and 0.45 for oil and 0.39 for protein content when the six USDA populations were combined and employed as training sets to predict the bi-parent-derived population. The results showed that four USDA-cultivated populations can be used as a training set individually or combined to predict oil and protein contents in GS when using 800 or more USDA germplasm accessions as a training set. The smaller the genetic distance between training population and testing population, the higher the PA. The PA increased as the population size increased. In across-population prediction, no significant difference was observed in PA for oil and protein content among different models. The PA increased as the SNP number increased until a marker set consisted of 10,000 SNPs. This study provides reasonable suggestions and methods for breeders to utilize public datasets for GS. It will aid breeders in developing GS-assisted breeding strategies to develop elite soybean cultivars with high oil and protein contents.

6.
Front Neurol ; 15: 1367177, 2024.
Article in English | MEDLINE | ID: mdl-38751885

ABSTRACT

Introduction: Symptomatic intracranial hemorrhage (sICH) is a serious complication of acute ischemic stroke (AIS) after endovascular treatment (EVT). Limited data exist regarding predictors and clinical implications of sICH after EVT, underscoring the significance of identifying risk factors to enhance prevention strategies. Therefore, the main objective of this study was to evaluate the incidence of sICH and identify its predictors after EVT in patients with large infarct core-AIS in the pre-circulation stage. Methods: Using data from the EVT for the Pre-circulation Large Infarct Core-AIS Study, we enrolled patients who were treated with EVT from the Prospective Multicenter Cohort Study of Early Treatment in Acute Stroke (MAGIC) registry. Baseline demographics, medical history, vascular risk factors, blood pressure, stroke severity, radiographic features, and EVT details were collected. The patients were classified into three groups: without intracranial hemorrhage (ICH), with asymptomatic intracranial hemorrhage (aICH), and sICH, based upon the occurrence of sICH. The main outcomes were the occurrence of sICH according to the Heidelberg Bleeding Classification and functional condition at 90 days. Multivariate logistic regression analysis and receiver operating characteristic (ROC) curves were used to identify independent predictors of sICH after EVT. Results: The study recruited a total of 490 patients, of whom 13.3% (n = 65) developed sICH. Patients with sICH had less favorable outcomes than those without intracranial hemorrhage (ICH) and those with aICH (13.8% vs. 43.5% vs. 32.2%, respectively; p < 0.001). The overall mortality was 41.8% (n = 205) at 90 days post-EVT. The univariate analysis revealed significant differences among the three groups in terms of blood glucose levels at admission, probability of favorable outcomes, incidence of brain herniation, and 90-day mortality. The multifactorial logistic regression analysis revealed that the blood glucose level at admission [odds ratio (OR) 1.169, p < 0.001, confidence interval (CI) 1.076-1.269] was an independent predictor of sICH. A blood glucose level of 6.95 mmol/L at admission was the best predictor of sICH, with an area under the ROC curve (AUC) of 0.685 (95% CI: 0.616-0.754). Discussion: The study findings demonstrated that the probability of sICH after EVT was 13.3% in patients with pre-circulation large infarct core-AIS, and sICH increased the risk of an unfavorable prognosis. Higher blood glucose levels at admission were associated with sICH after EVT in patients with pre-circulation large infarct core AIS. These findings underscore the importance of early management strategies to mitigate this risk.

7.
Nat Commun ; 15(1): 4242, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762562

ABSTRACT

P-type Fe3CoSb12-based skutterudite thin films are successfully fabricated, exhibiting high thermoelectric performance, stability, and flexibility at medium-to-high temperatures, based on preparing custom target materials and employing advanced pulsed laser deposition techniques to address the bonding challenge between the thin films and high-temperature flexible polyimide substrates. Through the optimization of fabrication processing and nominal doping concentration of Ce, the thin films show a power factor of >100 µW m-1 K-2 and a ZT close to 0.6 at 653 K. After >2000 bending cycle tests at a radius of 4 mm, only a 6 % change in resistivity can be observed. Additionally, the assembled p-type Fe3CoSb12-based flexible device exhibits a power density of 135.7 µW cm-2 under a temperature difference of 100 K with the hot side at 623 K. This work fills a gap in the realization of flexible thermoelectric devices in the medium-to-high-temperature range and holds significant practical application value.

8.
Am J Gastroenterol ; 119(6): 1158-1166, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38587286

ABSTRACT

INTRODUCTION: To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS: A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS: Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION: FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.


Subject(s)
Pancreatic Diseases , Humans , Female , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Aged , Pancreatic Diseases/epidemiology , Pancreatic Diseases/metabolism , Pancreatic Diseases/diagnostic imaging , Adult , Magnetic Resonance Imaging , Pancreatitis/epidemiology , Risk Factors , Biological Specimen Banks , Incidence , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/pathology , Intra-Abdominal Fat/diagnostic imaging , Prevalence , Diabetes Mellitus/epidemiology , Pancreas, Exocrine/metabolism , Proportional Hazards Models , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas/metabolism , UK Biobank
9.
Nat Commun ; 15(1): 3426, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654020

ABSTRACT

Single-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational "triple treatments" to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm-1 K-2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 µW cm-2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.

10.
Adv Mater ; : e2313146, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608290

ABSTRACT

Thermoelectric technology, which enables a direct and pollution-free conversion of heat into electricity, provides a promising path to address the current global energy crisis. Among the broad range of thermoelectric materials, silver copper chalcogenides (AgCuQ, Q = S, Se, Te) have garnered significant attention in thermoelectric community in light of inherently ultralow lattice thermal conductivity, controllable electronic transport properties, excellent thermoelectric performance across various temperature ranges, and a degree of ductility. This review epitomizes the recent progress in AgCuQ-based thermoelectric materials, from the optimization of thermoelectric performance to the rational design of devices, encompassing the fundamental understanding of crystal structures, electronic band structures, mechanical properties, and quasi-liquid behaviors. The correlation between chemical composition, mechanical properties, and thermoelectric performance in this material system is also highlighted. Finally, several key issues and prospects are proposed for further optimizing AgCuQ-based thermoelectric materials.

11.
Int J Surg ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526516

ABSTRACT

OBJECTIVE: Whole-course nutrition management (WNM) has been proven to improve outcomes and reduce complications. We conducted this randomized controlled trial to validate its effectiveness in patients undergoing pancreatoduodenectomy. METHODS: From December 1, 2020, to November 30, 2023, this single-center randomized clinical trial was conducted at the Department of Hepatobiliopancreatic Surgery in a major hospital in Beijing, China. Participants who were undergoing pancreatoduodenectomy were enrolled and randomly allocated to either the WNM group or the control group. The primary outcome was the incidence of postoperative complications. Subgroup analysis in patients who were at nutritional risk was performed. Finally, a six-month follow-up was conducted and the economic benefit was evaluated using an incremental cost-effectiveness ratio (ICER). RESULTS: A total of 84 patients were randomly assigned (1:1) into the WNM group and the control group. The incidences of total complications (47.6% vs. 69.0%, P=0.046), total infections (14.3% vs. 33.3%, P= 0.040) and abdominal infection (11.9% vs. 31.0%, P= 0.033) were significantly lower in the WNM group. In the subgroup analysis of patients at nutritional risk, 66 cases were included (35 cases in the WNM group and 31 cases in the control group). The rate of abdominal infection (11.4% vs. 32.3%, P= 0.039) and postoperative length of stay (23.1±10.3 vs. 30.4±17.2, P= 0.046) were statistically different between the two subgroups. In the six-month follow-up, more patients reached the energy target in the WNM group (97.0% vs. 79.4%, P=0.049) and got a higher daily energy intake (1761.3±339.5 vs. 1599.6±321.5, P=0.045). The ICER suggested that WNM saved 31,511 Chinese Yuan (CNY) while reducing the rate of total infections by 1% in the ITT population and saved 117,490 CNY in patients at nutritional risk, while WNM saved 31,511 CNY while reducing the rate of abdominal infections by 1% in the ITT population and saved 101,359 CNY in patients at nutritional risk. CONCLUSION: In this trial, whole-course nutrition management was associated with fewer total postoperative complications, total and abdominal infections, and was cost-effective, especially in patients at nutritional risk. It seems to be a favorable strategy for patients undergoing PD.

12.
Brain Behav ; 14(3): e3468, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468488

ABSTRACT

BACKGROUND: Atopic dermatitis is one of the most common skin disorders. Evidence has suggested an association between skin disorders, such as atopic dermatitis, and Parkinson's disease (PD). However, whether atopic dermatitis has a causal effect on PD remains unknown. METHODS: The study aimed to determine whether their association between atopic dermatitis and PD is causal, using a bidirectional two-sample Mendelian randomization method. Genetic variants from the public genome-wide association studies for atopic dermatitis (n = 10788 cases and 30047 controls) were selected to evaluate their causal effects on the risk of PD (33,674 cases and 449,056 controls). The inverse variance weighted (IVW) method was used as the primary analysis. RESULTS: The IVW results indicated that atopic dermatitis was associated with decreased risk of PD {fixed effects: odds ratio [OR] [95% confidence interval (CI)]: .905 [.832-.986], p = .022; OR [95% CI]: .905 [.827-.991], p = .032}. However, we failed to detect the causal effects of PD on risk of atopic dermatitis in the reverse causation analysis. CONCLUSION: This study indicated causal association of genetically proxied atopic dermatitis with the risk of PD. Future studies are warranted to explore the underlying mechanism and investigate the targeting effect of atopic dermatitis on PD.


Subject(s)
Dermatitis, Atopic , Parkinson Disease , Humans , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Odds Ratio
13.
BMC Genom Data ; 25(1): 25, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438864

ABSTRACT

OBJECTIVES: Soybean is an important feed and oil crop in the world due to its high protein and oil content. China has a collection of more than 43,000 soybean germplasm resources, which provides a rich genetic diversity for soybean breeding. However, the rich genetic diversity poses great challenges to the genetic improvement of soybean. This study reports on the de novo genome assembly of HJ117, a soybean variety with high protein content of 52.99%. These data will prove to be valuable resources for further soybean quality improvement research, and will aid in the elucidation of regulatory mechanisms underlying soybean protein content. DATA DESCRIPTION: We generated a contiguous reference genome of 1041.94 Mb for HJ117 using a combination of Illumina short reads (23.38 Gb) and PacBio long reads (25.58 Gb), with high-quality sequence coverage of approximately 22.44× and 24.55×, respectively. HJ117 was developed through backcross breeding, using Jidou 12 as the recurrent parent and Chamoshidou as the donor parent. The assembly was further assisted by 114.5 Gb Hi-C data (109.9×), resulting in a contig N50 of 19.32 Mb and scaffold N50 of 51.43 Mb. Notably, Core Eukaryotic Genes Mapping Approach (CEGMA) assessment and Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment results indicated that most core eukaryotic genes (97.18%) and genes in the BUSCO dataset (99.4%) were identified, and 96.44% of the genomic sequences were anchored onto twenty pseudochromosomes.


Subject(s)
Glycine max , Plant Breeding , Glycine max/genetics , Soybean Proteins/genetics , Benchmarking , China
14.
ACS Nano ; 18(12): 8996-9010, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38477219

ABSTRACT

Abnormal tumor microenvironment (TME) imposes barriers to nanomedicine penetration into tumors and evolves tumor-supportive nature to provide tumor cell protection, seriously weakening the action of antitumor nanomedicines and posing significant challenges to their development. Here, we engineer a TME-activatable size-switchable core-satellite nanosystem (Mn-TI-Ag@HA) capable of increasing the effective dose of therapeutic agents in deep-seated tumors while reversing tumor-supportive microenvironment for augmenting immuno/metal-ion therapy. When activated by TME, the nanosystem disintegrates, allowing ultrasmall-sized Ag nanoparticles to become unbound and penetrate deep into solid tumors. Simultaneously, the nanosystem produces O2 and releases TGF-ß inhibitors in situ to drive macrophage M2-to-M1 polarization, increasing intratumoral H2O2 concentration, and ultimately augmenting metal-ion therapy by accelerating hypertoxic Ag+ production. The nanosystem can overcome multiple obstacles that aid in tumor resistance to nanomedicine, demonstrating effective tumor penetration, TME regulation, and tumor inhibition effects. It can provoke long-term immunological memory effects against tumor rechallenge when combined with immune checkpoint inhibitor anti-PD-1. This work provides a paradigm for designing efficient antitumor nanomedicines.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Tumor Microenvironment , Hydrogen Peroxide/pharmacology , Silver/pharmacology , Neoplasms/therapy , Nanoparticles/therapeutic use , Cell Line, Tumor
15.
J Colloid Interface Sci ; 664: 136-145, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460379

ABSTRACT

Extracting functional materials from industrial waste residues to absorb organic dyes can maximize waste reuse and minimize water pollution. However, the extraordinarily low purification efficiency still limits the practical application of this strategy. Herein, the lamellar NiOOH is in-situ anchored on the industrial waste red mud surface (ARM/NiOOH) as an adsorbent to purify organic dyes in wastewater. ARM/NiOOH adsorbent with high specific surface area and porosity provides considerable active sites for the congo red (CR), thereby significantly enhancing the removal efficiency of CR. Besides, we fit a reasonable adsorption model for ARM/NiOOH adsorbent and investigate its adsorption kinetics. Resultantly, ARM/NiOOH adsorbent can remarkably adsorb 348.0 mg g-1 CR within 5 min, which is 7.91 times that of raw RM. Our work provides a strategy for reusing industrial waste and purifying sewage pollution, which advances wastewater treatment engineering.

16.
Adv Mater ; 36(23): e2311593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386199

ABSTRACT

Sericin, a protein derived from silkworm cocoons, is considered a waste product derived from the silk industry for thousands of years due to a lack of understanding of its properties. However, in recent decades, a range of exciting properties of sericin are studied and uncovered, including cytocompatibility, low-immunogenicity, photo-luminescence, antioxidant properties, as well as cell-function regulating activities. These properties make sericin-based biomaterials promising candidates for biomedical applications. This review summarizes the properties and bioactivities of silk sericin and highlights the latest developments in sericin in tissue engineering and regenerative medicine. Furthermore, the extended application of sericin in developing flexible electronic devices and 3D bioprinting is also discussed. It is believed that sericin-based biomaterials have great potential of being developed into novel tissue engineering products and smart implantable devices for various medical applications toward improving clinical outcomes.


Subject(s)
Biocompatible Materials , Sericins , Tissue Engineering , Animals , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Bombyx , Printing, Three-Dimensional , Regenerative Medicine , Sericins/chemistry , Sericins/therapeutic use , Silk/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
17.
Chem Asian J ; 19(10): e202400130, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38380867

ABSTRACT

The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m-1 K-1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe-based materials.

19.
Nat Commun ; 15(1): 923, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296942

ABSTRACT

Exploring new near-room-temperature thermoelectric materials is significant for replacing current high-cost Bi2Te3. This study highlights the potential of Ag2Se for wearable thermoelectric electronics, addressing the trade-off between performance and flexibility. A record-high ZT of 1.27 at 363 K is achieved in Ag2Se-based thin films with 3.2 at.% Te doping on Se sites, realized by a new concept of doping-induced orientation engineering. We reveal that Te-doping enhances film uniformity and (00l)-orientation and in turn carrier mobility by reducing the (00l) formation energy, confirmed by solid computational and experimental evidence. The doping simultaneously widens the bandgap, resulting in improved Seebeck coefficients and high power factors, and introduces TeSe point defects to effectively reduce the lattice thermal conductivity. A protective organic-polymer-based composite layer enhances film flexibility, and a rationally designed flexible thermoelectric device achieves an output power density of 1.5 mW cm-2 for wearable power generation under a 20 K temperature difference.

20.
ACS Nano ; 18(2): 1678-1689, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38164927

ABSTRACT

Incorporating donor doping into Mg3Sb1.5Bi0.5 to achieve n-type conductivity is one of the crucial strategies for performance enhancement. In pursuit of higher thermoelectric performance, we herein report co-doping with Te and Y to optimize the thermoelectric properties of Mg3Sb1.5Bi0.5, achieving a peak ZT exceeding 1.7 at 703 K in Y0.01Mg3.19Sb1.5Bi0.47Te0.03. Guided by first-principles calculations for compositional design, we find that Te-doping shifts the Fermi level into the conduction band, resulting in n-type semiconductor behavior, while Y-doping further shifts the Fermi level into the conduction band and reduces the bandgap, leading to enhanced thermoelectric performance with a power factor as high as >20 µW cm-1 K-2. Additionally, through detailed micro/nanostructure characterizations, we discover that Te and Y co-doping induces dense crystal and lattice defects, including local lattice distortions and strains caused by point defects, and densely distributed grain boundaries between nanocrystalline domains. These defects efficiently scatter phonons of various wavelengths, resulting in a low thermal conductivity of 0.83 W m-1 K-1 and ultimately achieving a high ZT. Furthermore, the dense lattice defects induced by co-doping can further strengthen the mechanical performance, which is crucial for its service in devices. This work provides guidance for the composition and structure design of thermoelectric materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...