Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 44(10): 3555-3570, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34633597

ABSTRACT

Xikuangshan antimony mine in Lengshuijiang, China, has been developed for many years, and stormwater runoff contains high levels of potentially toxic elements (PTEs). The aims were to find the sources of PTEs by statistical analysis and local spatial distribution of industrial activity and simulate transport process of PTEs in the soil to evaluate pollution extent and health risk. The PTEs in this study were antimony, cadmium, zinc, nickel, lead, and copper. The result showed antimony and a minor portion of zinc were derived from the antimony processing activities, copper derived from agricultural activities, and most of the zinc came from the zinc industry. Nickel, lead, and cadmium came from a mixed source of atmospheric transportation, vehicle transport, and other local industrial activities. Besides, antimony was the most hazardous element in this mining area. In the fourth year, the groundwater in the whole area was uncontaminated by antimony, and there was no non-carcinogenic health risk. Except for the southern area of Lianxi River and the area enclosed by South mine, Zhumushan village, and Tailing Dam, there was a non-carcinogenic risk at year 5.4. These sources of PTEs found in the stormwater runoff are useful for locals to control of PTEs pollution. And the health risk assessment method helps evaluate the risk of PTEs caused by stormwater runoff.


Subject(s)
Groundwater , Metals, Heavy , Soil Pollutants , Antimony/analysis , Cadmium/analysis , China , Copper/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Nickel/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Zinc/analysis
2.
Environ Sci Pollut Res Int ; 29(4): 5541-5551, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34424477

ABSTRACT

Manganese released from the piled manganese ore wastes is a great threat to the local ecosystem and human health. The mechanism and dynamic characteristics of manganese release from the manganese ore wastes were studied based on the static and dynamic experiments. The concentration of manganese in the leaching solution under the intensive state is twice that resulted from the static state; the manganese release from the waste rock increased with the increase of the solid-liquid ratio and reached 922.3 mg/L when the solid-liquid ratio was 1:5. When the particle size of waste rock was less than 180 µm, the release amount of manganese was the largest and reached 491.3 mg/L. When the pH was 7 and the rainfall intensity was 80 mL/h, the increase of leaching time contributed to the rapidly decreased amount of manganese released, and the leaching process reached equilibrium gradually. The cumulative release of manganese increased with the increase of rainfall duration. In the dynamic leaching process, the change of pH and EC of the leachate had nothing to do with the initial pH of leaching agent but has a close relationship with the hydrolysis of minerals in waste. According to the experimental results, it was found that the double constant equation model fitted the kinetic process of release process better. The purpose of this study was to provide a scientific basis for the assessment and control of manganese pollution in soil and groundwater in manganese mining area.


Subject(s)
Groundwater , Manganese , Ecosystem , Humans , Kinetics , Mining
3.
Integr Environ Assess Manag ; 18(3): 748-756, 2022 May.
Article in English | MEDLINE | ID: mdl-34436833

ABSTRACT

In this study, we analyzed 53 topsoil samples from the Xikuangshan South Mine in Hunan Province to investigate the distribution characteristics of pH and the concentrations of selected metals to determine the controlling factors and identify their sources. Kriging interpolation, correlation analysis, principal component analysis, the index of the geoaccumulation index, and Hakanson's potential ecological risk were applied. The results show that the mean values of Pb, As, Cd, and Sb in the study area were larger than the background value of mountain soil in Hunan Province, and only the average Cr concentration was slightly lower than the background value. The spatial distributions of pH and five metals in the soil were very different, indicating that pH had no significant effect on the distribution of the metals. The wind, rivers, and land-use patterns in different regions of the study area may be the main reasons for their distribution patterns. The correlation component and principal component analysis revealed that Pb showed positive correlations with Cr and Cd, respectively, and Sb-As and Cr-Cd showed strong paired correlations. The cumulative proportion of the first two components accounted for 70.516% of the total variance, which suggests that mining activities are a major source of As and Sb, whereas Pb, Cr, and Cd were derived from natural and anthropogenic sources. The geoaccumulation index revealed that the major pollutants in the soils were mainly Cd, followed by Sb and As. The soils in the study area were moderately contaminated with Pb and lightly polluted by Cr. The ecological hazards of each metal in descending order were Cd > Sb > As > Pb > Cr. The index of the comprehensive potential ecological risk for metals indicated that the Xikuangshan South Mine is at or above a moderate ecological risk level, with an extremely strong potential for ecological risks posed by Cd and Sb. Integr Environ Assess Manag 2022;18:748-756. © 2021 SETAC.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , China , Environmental Monitoring/methods , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...