Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 447
Filter
1.
Int J Biol Sci ; 20(7): 2763-2778, 2024.
Article in English | MEDLINE | ID: mdl-38725845

ABSTRACT

Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting ß-catenin/TGF-ß1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Carcinoma, Hepatocellular , Liver Neoplasms , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Humans , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Male , Mice , Multiomics
2.
Front Physiol ; 15: 1353407, 2024.
Article in English | MEDLINE | ID: mdl-38808356

ABSTRACT

This study investigated whether abnormal peak inversion spontaneous potentials (PISPs) recorded at resting myofascial trigger points (MTrPs) stem from the discharge of muscle spindles. Forty-eight male Sprague-Dawley rats were randomly divided into six groups. Five groups underwent MTrP modeling intervention, whereas one group did not receive intervention and was duly designated as the blank control. After model construction, five rat models were randomly subjected to ramp-and-hold stretch tests, succinylcholine injection, eperisone hydrochloride injection, saline injection, and blank drug intervention. By contrast, the rats in the blank control group were subjected to ramp-and-hold stretch tests as a control. Frequencies and amplitudes of PISPs were recorded pre- and post-interventions and compared with those of the blank group. Stretch tests showed that the depolarization time and amplitude of PISPs ranged from 0.4 ms to 0.9 ms and from 80 uV to 140 µV, respectively. However, no PISPs were observed in the control rats. The frequency of PISPs in the ramp and hold phases and the first second after the hold phase was higher than that before stretching (p < 0.01). Succinylcholine and eperisone exerted excitatory and inhibitory effects on PISPs, respectively. In the group injected with 0.9% saline, no considerable differences of the PISPs were observed during the entire observation period. In conclusion, PISPs recorded at resting MTrPs are closely related to muscle spindles. The formation of MTrPs may be an important factor that regulate dysfunctional muscle spindles.

3.
Adv Mater ; : e2402369, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794859

ABSTRACT

Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.

4.
Int J Ophthalmol ; 17(3): 551-557, 2024.
Article in English | MEDLINE | ID: mdl-38721499

ABSTRACT

AIM: To introduce the macular hole (MH) hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH. METHODS: This retrospective observational case series comprised 16 consecutive patients (17 eyes) diagnosed with MH. Inclusion criteria involved a hole aperture diameter larger than 600 µm or the presence of an unclosed MH larger than 600 µm following the previous vitrectomy. Standard MH repair procedures were administered in all cases, involving the manipulation and aspiration of the hole margin through the application of water flow with a soft-tip flute needle. A comprehensive assessment was conducted for each case before and after surgery, and optical coherence tomography (OCT) images were captured at every follow-up point. RESULTS: The mean preoperative aperture diameter was 747±156 µm (range 611-1180 µm), with a mean base diameter of 1390±435 µm (range 578-2220 µm). Following surgery, all cases achieved complete anatomical closure of MH, with 13 cases (76.5%) exhibiting type 1 closure and 4 cases (23.5%) demonstrating type 2 closure. No significant differences were observed in the preoperative OCT variables between the two closure types. Eyes with type 1 closure showed a significantly improved visual acuity (0.70±0.10, range 0.50-0.80) compared to those with type 2 closure (0.90±0.12, range 0.80-1.00, P=0.014). CONCLUSION: The MH hydromassage technique demonstrates promising results, achieving acceptable closure rates in cases of large or persistent MH. This technique may serve as an effective adjunctive maneuver during challenging MH surgery.

5.
Eur J Med Chem ; 273: 116493, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761790

ABSTRACT

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S. aureus, multidrug resistant S. aureus and Enterococcus faecalis were evaluated. Remarkably, compound 8b was identified with potent antibacterial activity against S. aureus (MIC = 0.06 µg/mL), MSSA (MIC = 0.125 µg/mL), MRSA (MIC = 0.06 µg/mL), LRSA (MIC = 0.125 µg/mL) and LREFa (MIC = 0.5 µg/mL). Compound 8b was demonstrated as a promising candidate through druglikeness evaluation including metabolism in microsomes and plasma, Caco-2 cell permeability, plasma protein binding, cytotoxicity, and inhibition of CYP450 and human monoamine oxidase. Notably, compound 8b displayed excellent PK profile with appropriate T1/2 of 1.49 h, high peak plasma concentration (Cmax = 2320 ng/mL), high plasma exposure (AUC0-t = 8310 h ng/mL), and superior oral bioavailability (F = 68.1 %) in Sprague-Dawley rats. Ultimately, in vivo efficacy of compound 8b in a mouse model of LRSA systemic infection was also demonstrated. Taken together, compound 8b represents a promising drug candidate for the treatment of linezolid-resistant Gram-positive bacterial strains infection.

6.
Biochem Biophys Res Commun ; 722: 150152, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38795452

ABSTRACT

MicroRNAs (miRNAs) can positively regulate gene expression through an unconventional RNA activation mechanism involving direct targeting 3' untranslated regions (UTRs). Our prior study found miR-93-5p activates mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in hepatocellular carcinoma (HCC) via its 3'UTR. However, the underlying mechanism remains elusive. Here, we identified two candidate AU-rich element (ARE) motifs (ARE1 and ARE2) adjacent to the miR-93-5p binding site located within the MAP3K2 3'UTR using AREsite2. Luciferase reporter and translation assays validated that only ARE2 participated in MAP3K2 activation. Integrative analysis revealed that human antigen R (HuR), an ARE2-associated RNA-binding protein (RBP), physically and functionally interacted with the MAP3K2 3'UTR. Consequently, an HuR-ARE2 complex was shown to facilitate miR-93-5p-mediated upregulation of MAP3K2 expression. Furthermore, bioinformatics analysis and studies of HCC cells and specimens highlighted an oncogenic role for HuR and positive HuR-MAP3K2 expression correlation. HuR is also an enhancing factor in the positive feedback circuit comprising miR-93-5p, MAP3K2, and c-Jun demonstrated in our prior study. The newly identified HuR-ARE2 involvement enriches the mechanism of miR-93-5p-driven MAP3K2 activation and suggests new therapeutic strategies warranted for exploration in HCC.

7.
Bioorg Chem ; 148: 107454, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38795581

ABSTRACT

HPK1 also referred to as MAP4K1, belongs to the category of mammalian STE20-like protein serine/threonine kinases. Its physiological function involves the down-regulation of T cell signals, and it is regarded as a new immune checkpoint of tumor immunology. In this study, we commenced our investigation with the hit compounds, focusing the efforts on structural optimization and SAR exploration to identify a novel class of 2,4-diaminopyrimidine HPK1 inhibitors. Notably, compound 14g exhibited a remarkable inhibitory effect on HPK1 kinase (IC50 = 0.15 nM), significantly suppressed the phosphorylation of the downstream adaptor protein SLP76 (pSLP76 IC50 = 27.92 nM), and effectively stimulated the secretion of the T cell activation marker IL-2 (EC50 = 46.64 nM). In vitro microsomal stability assay, compound 14g showed moderate stability in HLMs with T1/2 = 38.2 min and CLint = 36.4 µL·min-1·mg-1 proteins. In vivo pharmacokinetic studies, compound 14g demonstrated heightened plasma exposure (AUC0-inf = 644 ng·h·mL-1), extended half-life (T1/2 = 9.98 h), and reduced plasma clearance (CL = 52.3 mL·min-1·kg-1) compared to the reference compound after a single intravenous dose of 2 mg/kg in rats. These results indicated that compound 14g emerged as a promising inhibitor of HPK1.

8.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Subject(s)
Arbutin , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Arbutin/pharmacokinetics , Arbutin/pharmacology , Tandem Mass Spectrometry/methods , Animals , Humans , Caco-2 Cells , Male , Chromatography, Liquid/methods , Rats , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Protein Binding , Cytochrome P-450 Enzyme System/metabolism , Biological Products/pharmacokinetics , Biological Products/pharmacology , Biological Products/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
9.
Expert Opin Drug Saf ; 23(5): 637-648, 2024 May.
Article in English | MEDLINE | ID: mdl-38564277

ABSTRACT

OBJECTIVES: To explore the association between palbociclib and related adverse events (AEs) in the real world through U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS: The signal strength of palbociclib-related AEs was done by disproportionality analysis. Clinical priority of palbociclib-related AEs was scored and ranked by assessing five different features. Outcome analysis, time to onset analysis, dose-report /AEs number analysis, and stratification analysis were all performed. RESULTS: There were 61,821 'primary suspected (PS)' reports of palbociclib and 195,616 AEs associated with palbociclib. The four algorithms simultaneously detected 18 positive signals at the SOC level, and 65 positive signals at the PT level. Bone marrow failure, neuropathy, peripheral, pleural effusion, myelosuppression, pulmonary edema, and pulmonary thrombosis were also found to have positive signals. Gender (female vs male, χ2 = 5.287, p = 0.022) and age showed significant differences in serious and non-serious reports. Palbociclib-related AEs had a median onset time of 79 days (interquartile range [IQR] 20-264 days). CONCLUSIONS: The study identified potential Palbociclib-related AEs and offered warnings for special AEs, providing further data for palbociclib safety studies in breast cancer patients. Nonetheless, prospective clinical trials are needed to validate these results and explain their relationship.


Subject(s)
Adverse Drug Reaction Reporting Systems , Antineoplastic Agents , Databases, Factual , Piperazines , Product Surveillance, Postmarketing , Pyridines , United States Food and Drug Administration , Pyridines/adverse effects , Pyridines/administration & dosage , Humans , Piperazines/adverse effects , Piperazines/administration & dosage , Male , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Female , United States , Middle Aged , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Adult , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Algorithms , Sex Factors , Aged, 80 and over , Age Factors , Time Factors , Young Adult , Dose-Response Relationship, Drug
10.
Nat Commun ; 15(1): 2582, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519477

ABSTRACT

Achieving untargeted chemical identification, isomeric differentiation, and quantification is critical to most scientific and technological problems but remains challenging. Here, we demonstrate an integrated SERS-based chemical taxonomy machine learning framework for untargeted structural elucidation of 11 epimeric cerebrosides, attaining >90% accuracy and robust single epimer and multiplex quantification with <10% errors. First, we utilize 4-mercaptophenylboronic acid to selectively capture the epimers at molecular sites of isomerism to form epimer-specific SERS fingerprints. Corroborating with in-silico experiments, we establish five spectral features, each corresponding to a structural characteristic: (1) presence/absence of epimers, (2) monosaccharide/cerebroside, (3) saturated/unsaturated cerebroside, (4) glucosyl/galactosyl, and (5) GlcCer or GalCer's carbon chain lengths. Leveraging these insights, we create a fully generalizable framework to identify and quantify cerebrosides at concentrations between 10-4 to 10-10 M and achieve multiplex quantification of binary mixtures containing biomarkers GlcCer24:1, and GalCer24:1 using their untrained spectra in the models.


Subject(s)
Cerebrosides , Glucosylceramides , Cerebrosides/chemistry , Galactosylceramides , Monosaccharides , Chemical Phenomena
11.
Exp Neurol ; 374: 114718, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336285

ABSTRACT

Executive function, including working memory, attention and inhibitory control, is crucial for decision making, thinking and planning. Lisdexamfetamine, the prodrug of d-amphetamine, has been approved for treating attention-deficit hyperactivity disorder and binge eating disorder, but whether it improves executive function under non-disease condition, as well as the underlying pharmacokinetic and neurochemical properties, remains unclear. Here, using trial unique non-matching to location task and five-choice serial reaction time task of rats, we found lisdexamfetamine (p.o) enhanced spatial working memory and sustained attention under various cognitive load conditions, while d-amphetamine (i.p) only improved these cognitive performances under certain high cognitive load condition. Additionally, lisdexamfetamine evoked less impulsivity than d-amphetamine, indicating lower adverse effect on inhibitory control. In vivo pharmacokinetics showed lisdexamfetamine produced a relative stable and lasting release of amphetamine base both in plasma and in brain tissue, whereas d-amphetamine injection elicited rapid increase and dramatical decrease in amphetamine base levels. Microdialysis revealed lisdexamfetamine caused lasting release of dopamine within the medial prefrontal cortex (mPFC), whereas d-amphetamine produced rapid increase followed by decline to dopamine level. Moreover, lisdexamfetamine elicited more obvious efflux of noradrenaline than that of d-amphetamine. The distinct neurochemical profiles may be partly attributed to the different action of two drugs to membranous catecholamine transporters level within mPFC, detecting by Western Blotting. Taken together, due to its certain pharmacokinetic and catecholamine releasing profiles, lisdexamfetamine produced better pharmacological action to improving executive function. Our finding provided valuable evidence on the ideal pharmacokinetic and neurochemical characteristics of amphetamine-type psychostimulants in cognition enhancement.


Subject(s)
Central Nervous System Stimulants , Lisdexamfetamine Dimesylate , Rats , Animals , Lisdexamfetamine Dimesylate/pharmacology , Executive Function , Dopamine , Central Nervous System Stimulants/adverse effects , Dextroamphetamine/adverse effects , Dextroamphetamine/pharmacokinetics , Amphetamine/pharmacology , Catecholamines , Cognition
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 308-312, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387940

ABSTRACT

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm with splenomegaly as the major clinical manifestation, which is commonly considered to be linked to splenic extramedullary hematopoiesis. Alteration of CXCL12/CXCR4 pathway can lead to the migration of hematopoietic stem cells and hematopoietic progenitor cells from bone marrow to spleen which results in splenic extramedullary hematopoiesis. In addition, low GATA1 expression and the abnormal secretion of cytokines were found to be significantly associated with splenomegaly. With the application of JAK1/2 inhibitors in clinical, the symptoms of splenomegaly have been significantly improved in PMF patients. This article will review the pathogenesis and targeted treatment progress of splenomegaly in PMF.


Subject(s)
Janus Kinase Inhibitors , Primary Myelofibrosis , Humans , Splenomegaly/complications , Splenomegaly/pathology , Splenomegaly/therapy , Primary Myelofibrosis/therapy , Bone Marrow/metabolism , Spleen , Hematopoietic Stem Cells , Janus Kinase Inhibitors/metabolism
13.
Nutrients ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337648

ABSTRACT

Exclusive enteral nutrition (EEN) is an established dietary treatment for Crohn's disease (CD) by alleviating inflammation and inducing remission. However, the mechanisms of action of EEN are incompletely understood. As CD is associated with gut microbiome dysbiosis, we investigated the effect of EEN on the microbiome in a rat model of CD-like colitis. The rat model of CD-like colitis was established by an intracolonic instillation of TNBS at 65 mg/kg in 250 µL of 40% ethanol. Sham control rats were instilled with saline. Rats were fed ad libitum with either regular pellet food or EEN treatment with a clear liquid diet (Ensure). Rats were euthanized at 7 days. Fecal pellets were collected from the distal colon for 16S rRNA sequencing analysis of gut microbiota. In addition, colon tissues were taken for histological and molecular analyses in all the groups of rats. EEN administration to TNBS-induced CD rats significantly improved the body weight change, inflammation scores, and disease activity index. The mRNA expression of IL-17A and interferon-γ was significantly increased in the colonic tissue in TNBS rats when fed with regular food. However, EEN treatment significantly attenuated the increase in IL-17A and interferon-γ in TNBS rats. Our 16S rRNA sequencing analysis found that gut microbiota diversity and compositions were significantly altered in TNBS rats, compared to controls. However, EEN treatment improved alpha diversity and increased certain beneficial bacteria such as Lactobacillus and Dubosiella and decreased bacteria such as Bacteroides and Enterorhabdus in CD-like rats, compared to CD-like rats with the regular pellet diet. In conclusion, EEN treatment increases the diversity of gut microbiota and the composition of certain beneficial bacteria. These effects may contribute to the reduced inflammation by EEN in the rat model of CD-like colitis.


Subject(s)
Colitis , Crohn Disease , Gastrointestinal Microbiome , Rats , Animals , Crohn Disease/microbiology , Enteral Nutrition , RNA, Ribosomal, 16S/genetics , Interleukin-17 , Interferon-gamma , Colitis/chemically induced , Colitis/therapy , Bacteria , Inflammation/therapy , Remission Induction
14.
Environ Monit Assess ; 196(3): 307, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407658

ABSTRACT

As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.


Subject(s)
Ecosystem , Environmental Pollutants , Entropy , Sewage , Environmental Monitoring
15.
CRISPR J ; 7(1): 29-40, 2024 02.
Article in English | MEDLINE | ID: mdl-38353621

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used to create animal models for biomedical and agricultural use owing to its low cost and easy handling. However, the occurrence of erroneous cleavage (off-targeting) may raise certain concerns for the practical application of the CRISPR-Cas9 system. In this study, we created a melanocortin 1 receptor (MC1R)-edited pig model through somatic cell nuclear transfer (SCNT) by using porcine kidney cells modified by the CRISPR-Cas9 system. We then carried out whole-genome sequencing of two MC1R-edited pigs and two cloned wild-type siblings, together with the donor cells, to assess the genome-wide presence of single-nucleotide variants and small insertions and deletions (indels) and found only one candidate off-target indel in both MC1R-edited pigs. In summary, our study indicates that the minimal off-targeting effect induced by CRISPR-Cas9 may not be a major concern in gene-edited pigs created by SCNT.


Subject(s)
CRISPR-Cas Systems , Receptor, Melanocortin, Type 1 , Animals , Swine/genetics , Receptor, Melanocortin, Type 1/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Mutation , INDEL Mutation/genetics
16.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338416

ABSTRACT

Protein tyrosine phosphatases (PTPs) are ubiquitous in living organisms and are promising drug targets for cancer, diabetes/obesity, and autoimmune disorders. In this study, a histone deacetylase inhibitor called suberoylanilide hydroxamic acid (SAHA) was added to a culture of marine fungi (Aspergillus sydowii DL1045) to identify potential drug candidates related to PTP inhibition. Then, the profile of the induced metabolites was characterized using an integrated metabolomics strategy. In total, 46% of the total SMs were regulated secondary metabolites (SMs), among which 20 newly biosynthesized metabolites (10% of the total SMs) were identified only in chemical epigenetic regulation (CER) broth. One was identified as a novel compound, and fourteen compounds were identified from Aspergillus sydowii first. SAHA derivatives were also biotransformed by A. sydowii DL1045, and five of these derivatives were identified. Based on the bioassay, some of the newly synthesized metabolites exhibited inhibitory effects on PTPs. The novel compound sydowimide A (A11) inhibited Src homology region 2 domain-containing phosphatase-1 (SHP1), T-cell protein tyrosine phosphatase (TCPTP) and leukocyte common antigen (CD45), with IC50 values of 1.5, 2.4 and 18.83 µM, respectively. Diorcinol (A3) displayed the strongest inhibitory effect on SHP1, with an IC50 value of 0.96 µM. The structure-activity relationship analysis and docking studies of A3 analogs indicated that the substitution of the carboxyl group reduced the activity of A3. Research has demonstrated that CER positively impacts changes in the secondary metabolic patterns of A. sydowii DL1045. The compounds produced through this approach will provide valuable insights for the creation and advancement of novel drug candidates related to PTP inhibition.


Subject(s)
Aspergillus , Epigenesis, Genetic , Aspergillus/chemistry , Protein Tyrosine Phosphatases , Vorinostat/pharmacology
17.
Ophthalmol Ther ; 13(5): 1145-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38416329

ABSTRACT

INTRODUCTION: Acute leukemia often affects microcirculation perfusion. This study aimed to investigate retinal microvascular changes in patients with acute leukemia without retinopathy during clinical remission using optical coherence tomography angiography (OCTA) and to determine the correlation of these changes with systemic laboratory values. METHODS: Thirty-eight patients in remission from acute leukemia with no retinopathy (NLR group) and 36 age-matched healthy individuals (control group) were included in this cross-sectional study. OCTA parameters, including the central foveal thickness (CFT), foveal avascular zone (FAZ) area, FAZ perimeter, acircularity index (AI), foveal density (FD300), and the vessel densities (VDs) of the superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris were analyzed in a 6 × 6 mm2 macular scan. Correlation and multiple linear regression analyses were conducted to identify potential systemic characteristics associated with these OCTA metrics. RESULTS: AI (P = 0.034) and FD300 (P < 0.001) differed significantly between the NLR and control groups. The VD of SCP in the parafovea (P = 0.001) and of DCP in both the parafovea (P = 0.011) and perifovea (P = 0.001) were significantly lower in the NLR group than in the control group. In a multiple linear regression analysis, the reduced VD of the perifoveal DCP was significantly correlated with the increased international normalized ratio (standardized beta [STD ß] = - 0.356; P = 0.047). CONCLUSIONS: Macular microvascular changes can be observed during remission from acute leukemia antecedent to clinically visible retinal lesions. Hematological disturbances may be associated with microvascular impairments in preclinical leukemic retinopathy.

18.
Int J Biol Macromol ; 263(Pt 1): 130285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373571

ABSTRACT

Phase change microcapsules are known for their latent heat storage capability. However, the efficient absorption and utilization of solar energy by these microcapsules remains a significant challenge. In this study, we successfully prepared composite phase change microcapsules containing ZnO-Ag nanospheres, chitosan, and paraffin. These microcapsules demonstrated remarkable photothermal conversion efficiency. ZnO was found to effectively absorb ultraviolet light, while the plasmonic resonance of Ag was utilized to absorb and make use of light energy in the visible region. Moreover, due to the synergistic absorption and reflection of electromagnetic waves by ZnO-Ag nanoparticles and graphene, the well-dispersed chitosan/ZnO-Ag composite microcapsules and graphene in the fabric coating demonstrated exceptional electromagnetic shielding performance. In addition, the coated fabric based on composite microcapsules exhibited excellent antibacterial properties, effectively inhibiting the growth of bacteria such as S. aureus and E. coli. This antibacterial performance adds to their potential applications in various fields. These multifunctional phase change microcapsules offer vast potential for the effective utilization of solar energy, serving as efficient photothermal conversion and energy storage materials.


Subject(s)
Chitosan , Graphite , Solar Energy , Zinc Oxide , Zinc Oxide/pharmacology , Escherichia coli , Staphylococcus aureus , Capsules , Anti-Bacterial Agents/pharmacology
19.
World J Clin Cases ; 12(1): 163-168, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38292635

ABSTRACT

BACKGROUND: Endophthalmitis occurring in silicone oil-filled eyes is a very rare occurrence, with reported incidence rates ranging between 0.07% and 0.039%. Traditional methods of management of infectious endophthalmitis include the removal of silicone oil, washout of the vitreous cavity, administration of intravitreal antibiotics, and re-injection of silicone oil. CASE SUMMARY: Herein, we report the case of a 39-year-old man with unilateral endophthalmitis after pars plana vitrectomy and silicone oil tamponade. Intravitreal injections of full-dose antibiotics and anterior chamber washout were used to treat the patient. No signs of retinal toxicity were observed during the follow-up period. CONCLUSION: Intravitreal full-dose antibiotic injections and anterior chamber washout are promising alternatives to traditional therapies for endophthalmitis in silicone oil-filled eyes.

20.
Acta Physiol (Oxf) ; 240(3): e14095, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243724

ABSTRACT

AIM: Physical exercise triggers the secretion of small extracellular vesicles (sEVs) into the circulation in humans, enabling signalling crosstalk between tissues. Exercise-derived EVs and their cargo have been proposed to mediate adaptations to exercise; however, our understanding of how exercise-derived EV protein cargo is modulated by factors such as aerobic fitness and age of an individual is currently unknown. Here, we examined the circulating sEV proteome following aerobic exercise in healthy males of different ages and aerobic fitness to understand exercise-induced EV response during the aging process. METHODS: Twenty-eight healthy men completed a bout of 20-min cycling exercise at 70% estimated VO2peak . Small EVs were isolated from blood samples collected before and immediately after exercise, and then quantified using particle analysis and Western blotting. Small EV proteome was examined using quantitative proteomic analysis. RESULTS: We identified a significant increase in 13 proteins in small plasma EVs following moderate-to-vigorous intensity exercise. We observed distinct changes in sEV proteome after exercise in young, mature, unfit, and fit individuals, highlighting the impact of aerobic fitness and age on sEV protein secretion. Functional enrichment and pathway analysis identified that the majority of the significantly altered sEV proteins are associated with the innate immune system, including proteins known to be damage-associated molecular patterns (DAMPs). CONCLUSION: Together, our findings suggest that exercise-evoked acute stress can positively challenge the innate immune system through the release of signalling molecules such as DAMPs in sEVs, proposing a novel EV-based mechanism for moderate-to-vigorous intensity exercise in immune surveillance pathways.


Subject(s)
Extracellular Vesicles , Proteome , Male , Humans , Proteomics , Exercise , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...